Development and Validation of Interpretable Machine Learning Models for Clinically Significant Prostate Cancer Diagnosis in Patients With Lesions of PI‐RADS v2.1 Score ≥3

医学 接收机工作特性 前列腺癌 前列腺 布里氏评分 逻辑回归 核医学 活检 前列腺活检 放射科 癌症 人工智能 内科学 计算机科学
作者
Mingjian Ruan,Yi Liu,Kaifeng Yao,Kexin Wang,Yu Fan,Shiliang Wu,Xiaoying Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29275
摘要

Background For patients with PI‐RADS v2.1 ≥ 3, prostate biopsy is strongly recommended. Due to the unsatisfactory positive rate of biopsy, improvements in clinically significant prostate cancer (csPCa) risk assessments are required. Purpose To develop and validate machine learning (ML) models based on clinical and imaging parameters for csPCa detection in patients with PI‐RADS v2.1 ≥ 3. Study Type Retrospective. Subjects One thousand eighty‐three patients with PI‐RADS v2.1 ≥ 3, randomly split into training (70%, N = 759) and validation (30%, N = 324) datasets, and 147 patients enrolled prospectively for testing. Field Strength/Sequence 3.0 T scanners/T2‐weighted fast spin echo sequence and DWI with diffusion‐weighted single‐shot gradient echo planar imaging sequence. Assessment The factors evaluated for csPCa detection were age, prostate specific antigen, prostate volume, and the diameter and location of the index lesion, PI‐RADSv2.1. Five ML models for csPCa detection were developed: logistic regression (LR), extreme gradient boosting, random forest (RF), decision tree, and support vector machines. The csPCa was defined as Gleason grade ≥2. Statistical Tests Univariable and multivariable LR analyses to identify parameters associated with csPCa. Area under the receiver operating characteristic curve (AUC), Brier score, and DeLong test were used to assess and compare the csPCa diagnostic performance with the LR model. The significance level was defined as 0.05. Results The RF model exhibited the highest AUC (0.880–0.904) and lowest Brier score (0.125–0.133) among the ML models in the validation and testing cohorts, however, there was no difference when compared to the LR model ( P = 0.453 and 0.548). The sensitivity and negative predictive values in the validation and testing cohorts were 93.8%–97.6% and 82.7%–95.1%, respectively, at a threshold of 0.450 (99% sensitivity of the RF model). Data Conclusion The RF model might help for assessing the risk of csPCa and preventing overdiagnosis and unnecessary biopsy for men with PI‐RADSv2.1 ≥ 3. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵乐驹发布了新的文献求助10
刚刚
李健应助别喝他的酒采纳,获得10
刚刚
1秒前
科研通AI5应助ewmmel采纳,获得10
2秒前
丘比特应助吉师大_科研采纳,获得10
2秒前
现代飞鸟完成签到,获得积分10
3秒前
不见高山发布了新的文献求助10
3秒前
科目三应助芋泥采纳,获得10
4秒前
阿白完成签到,获得积分10
5秒前
5秒前
Singularity应助Yubaibaio采纳,获得10
5秒前
酱啊油发布了新的文献求助10
6秒前
科研互通发布了新的文献求助30
7秒前
7秒前
科目三应助酸酸采纳,获得10
8秒前
分工合作完成签到,获得积分10
8秒前
隐形鸣凤完成签到,获得积分10
9秒前
9秒前
巧克力餐包完成签到 ,获得积分10
9秒前
糖卜里卜发布了新的文献求助20
10秒前
不见高山完成签到,获得积分10
10秒前
超级盼海发布了新的文献求助10
10秒前
10秒前
hjy完成签到,获得积分10
10秒前
桐桐应助菜菜羊采纳,获得10
11秒前
12秒前
活泼莫英发布了新的文献求助10
12秒前
未启名完成签到,获得积分20
12秒前
13秒前
内向的火车完成签到 ,获得积分10
13秒前
个股发布了新的文献求助10
13秒前
llly完成签到,获得积分10
13秒前
廿久发布了新的文献求助10
13秒前
小鹿5460发布了新的文献求助10
13秒前
芋泥完成签到,获得积分10
14秒前
一二发布了新的文献求助10
14秒前
yearluren完成签到,获得积分10
14秒前
木槿完成签到,获得积分10
15秒前
快乐二方完成签到 ,获得积分10
16秒前
科研通AI5应助长孙归尘采纳,获得10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274