电介质
材料科学
金属
灵敏度(控制系统)
光电子学
凝聚态物理
物理
电子工程
冶金
工程类
作者
Man Luo,Yi Zhou,Xuyang Zhao,Zhihe Guo,Yuxiang Li,Qi Wang,Junjie Liu,Wei Luo,Yuzhi Shi,A. Q. Liu,Xiang Wu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-02-13
卷期号:18 (8): 6477-6486
被引量:7
标识
DOI:10.1021/acsnano.3c11994
摘要
Enhancing light–matter interaction is a key requisite in the realm of optical sensors. Bound states in the continuum (BICs), possessing high quality factors (Q factors), have shown great advantages in sensing applications. Recent theories elucidate the ability of BICs with hybrid metal–dielectric architectures to achieve high Q factors and high sensitivities. However, the experimental validation of the sensing performance in such hybrid systems remains equivocal. In this study, we propose two symmetry-protected quasi-BIC modes in a metal–dielectric metasurface. Our results demonstrate that, under the normal incidence of light, the quasi-BIC mode dominated by dielectric can achieve a high Q factor of 412 and a sensing performance with a high bulk sensitivity of 492.7 nm/RIU (refractive index unit) and a figure of merit (FOM) of 266.3 RIU–1, while the quasi-BIC mode dominated by metal exhibits a stronger surface affinity in the biotin–streptavidin bioassay. These findings offer a promising approach for implementing metasurface-based sensors, representing a paradigm for high-sensitivity biosensing platforms.
科研通智能强力驱动
Strongly Powered by AbleSci AI