Networked information interactions in schizophrenia magnetoencephalograms based on permutation transfer entropy

计算机科学 传递熵 排列(音乐) 精神分裂症(面向对象编程) 理论计算机科学 人工智能 最大熵原理 物理 声学 程序设计语言
作者
Qiong Wang,Xiaokun Yang,Wei Yan,Jiafeng Yu,Jun Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 105977-105977
标识
DOI:10.1016/j.bspc.2024.105977
摘要

Brain network science plays an important role in the exploration of neurological and psychiatric diseases. To explore the information interactions in the magnetoencephalogram (MEG) data of schizophrenia, we construct resting-state brain networks based on permutation transfer entropy in 17 schizophrenia patients (SCZs) and 14 healthy controls (HCs). In this process, the effects of equal values on permutation and probability distribution are particularly considered. We quantify three network features, namely, weight, complexity and nonequilibrium, to characterize the schizophrenia MEG network. The results indicate that the level of information interactions between brain regions, the inward, outward and total information flows in brain regions of SCZs are generally smaller than those of HCs. In the complexity analysis, the Shannon entropy of the information inflows and outflows in the right parietal region of SCZs exhibits significant differences, and further the Shannon entropy of the information inflows (p=0.003) and outflows (p=0.034) of the whole brain of SCZs is significantly higher than that for HCs. Additionally, SCZs have lower values of local nonequilibrium than HCs in all brain regions except the middle central and middle frontal regions, with the right parietal region having the strongest significance (p=0.015), and the whole-brain nonequilibrium of SCZs is significantly lower than that of HCs (p=0.022). The MEG network constructed based on permutation transfer entropy can be used to effectively extract the characteristics of schizophrenia, and the comparative analysis of the complexity and nonequilibrium features can expand the exploration of the pathological and physiological mechanisms of schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dhlswpu发布了新的文献求助10
刚刚
懒懒完成签到,获得积分10
1秒前
等待冬亦应助白桃味的夏采纳,获得20
1秒前
科目三应助彤彤万事通采纳,获得10
1秒前
1秒前
呃呃呃c应助大辉采纳,获得10
1秒前
2秒前
李明涵完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
Zhengzhang发布了新的文献求助10
4秒前
肥女姐姐完成签到,获得积分10
5秒前
5秒前
lucky发布了新的文献求助10
6秒前
6秒前
孙燕应助清晨的小鹿采纳,获得10
6秒前
hhh发布了新的文献求助10
6秒前
爆米花应助飞鸟采纳,获得10
7秒前
SYLH应助早日暴富采纳,获得10
7秒前
SYLH应助早日暴富采纳,获得10
7秒前
酷波er应助fe999采纳,获得20
8秒前
可爱的盼晴完成签到,获得积分10
8秒前
9秒前
廿廿发布了新的文献求助30
9秒前
9秒前
yydsyk发布了新的文献求助10
9秒前
Jasper应助谨慎天问采纳,获得10
9秒前
豆豆发布了新的文献求助10
9秒前
10秒前
斯文败类应助dhlswpu采纳,获得10
10秒前
大仙发布了新的文献求助10
10秒前
10秒前
ghq7724发布了新的文献求助10
11秒前
豆豆可发布了新的文献求助10
11秒前
蕾娜发布了新的文献求助10
11秒前
NexusExplorer应助B314ZJH采纳,获得10
12秒前
情怀应助栾栾栾采纳,获得10
12秒前
活泼莫英发布了新的文献求助10
13秒前
123456完成签到 ,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835693
求助须知:如何正确求助?哪些是违规求助? 3378029
关于积分的说明 10501900
捐赠科研通 3097669
什么是DOI,文献DOI怎么找? 1705937
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772260