亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Networked information interactions in schizophrenia magnetoencephalograms based on permutation transfer entropy

计算机科学 传递熵 排列(音乐) 精神分裂症(面向对象编程) 理论计算机科学 人工智能 最大熵原理 物理 声学 程序设计语言
作者
Qiong Wang,Xiaokun Yang,Wei Yan,Jiafeng Yu,Jun Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 105977-105977
标识
DOI:10.1016/j.bspc.2024.105977
摘要

Brain network science plays an important role in the exploration of neurological and psychiatric diseases. To explore the information interactions in the magnetoencephalogram (MEG) data of schizophrenia, we construct resting-state brain networks based on permutation transfer entropy in 17 schizophrenia patients (SCZs) and 14 healthy controls (HCs). In this process, the effects of equal values on permutation and probability distribution are particularly considered. We quantify three network features, namely, weight, complexity and nonequilibrium, to characterize the schizophrenia MEG network. The results indicate that the level of information interactions between brain regions, the inward, outward and total information flows in brain regions of SCZs are generally smaller than those of HCs. In the complexity analysis, the Shannon entropy of the information inflows and outflows in the right parietal region of SCZs exhibits significant differences, and further the Shannon entropy of the information inflows (p=0.003) and outflows (p=0.034) of the whole brain of SCZs is significantly higher than that for HCs. Additionally, SCZs have lower values of local nonequilibrium than HCs in all brain regions except the middle central and middle frontal regions, with the right parietal region having the strongest significance (p=0.015), and the whole-brain nonequilibrium of SCZs is significantly lower than that of HCs (p=0.022). The MEG network constructed based on permutation transfer entropy can be used to effectively extract the characteristics of schizophrenia, and the comparative analysis of the complexity and nonequilibrium features can expand the exploration of the pathological and physiological mechanisms of schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nut完成签到,获得积分10
刚刚
北方柔和的干姜完成签到,获得积分10
4秒前
风笛完成签到 ,获得积分10
5秒前
6秒前
7秒前
Lee发布了新的文献求助10
10秒前
瘦瘦的艳发布了新的文献求助10
12秒前
Lee完成签到,获得积分10
17秒前
王健锟应助唐泽雪穗采纳,获得50
19秒前
王健锟应助唐泽雪穗采纳,获得60
19秒前
王健锟应助唐泽雪穗采纳,获得80
19秒前
王健锟应助唐泽雪穗采纳,获得70
19秒前
王健锟应助唐泽雪穗采纳,获得70
19秒前
王健锟应助唐泽雪穗采纳,获得70
19秒前
王健锟应助唐泽雪穗采纳,获得50
19秒前
瘦瘦的艳完成签到,获得积分10
23秒前
26秒前
sq_gong完成签到 ,获得积分10
28秒前
科研通AI5应助小付采纳,获得10
29秒前
二十九发布了新的文献求助10
32秒前
光合作用完成签到,获得积分10
32秒前
abc完成签到 ,获得积分0
35秒前
务实书包完成签到,获得积分10
36秒前
研友_VZG7GZ应助ww采纳,获得10
44秒前
45秒前
科研通AI5应助doni采纳,获得10
52秒前
唐泽雪穗发布了新的文献求助50
56秒前
58秒前
1分钟前
1分钟前
大大大发布了新的文献求助10
1分钟前
aiid发布了新的文献求助10
1分钟前
二十九完成签到,获得积分10
1分钟前
大大大完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
赘婿应助科研通管家采纳,获得30
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
tuanheqi应助科研通管家采纳,获得150
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173170
求助须知:如何正确求助?哪些是违规求助? 4363152
关于积分的说明 13585159
捐赠科研通 4211507
什么是DOI,文献DOI怎么找? 2309829
邀请新用户注册赠送积分活动 1308897
关于科研通互助平台的介绍 1256261