Crystal Self-Assembly under Confinement: Bridging Nanomaterials to Integrated Devices

纳米技术 自组装 材料科学 纳米材料 纳米结构 背景(考古学) 模板 纳米颗粒 平版印刷术 桥接(联网) 软物质 胶体 化学 光电子学 计算机科学 古生物学 计算机网络 物理化学 生物
作者
Jiangang Feng,Yuchen Qiu,Hanfei Gao,Yuchen Wu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (2): 222-233 被引量:14
标识
DOI:10.1021/acs.accounts.3c00603
摘要

ConspectusSelf-assembly, a spontaneous process that organizes disordered constituents into ordered structures, has revolutionized our fundamental understanding of living matter, nanotechnology, and molecular science. From the perspective of nanomaterials, self-assembly serves as a bottom-up method for creating long-range-ordered materials. This is accomplished by tailoring the geometry, chemistry, and interactions of the components, thereby facilitating the efficient fabrication of high-quality materials and high-performance functional devices. Over the past few decades, we have seen controllable organization and diverse phases in self-assembled materials, such as organic crystals, biomolecular structures, and colloidal nanoparticle supercrystals. However, most self-assembled ordered materials and their assembly mechanisms are derived from constituents in a liquid bulk medium, where the effects of boundaries and interfaces are negligible. In the context of nanostructure patterning, self-assembly occurs in confined spaces, with feature sizes ranging from a few to hundreds of nanometers. In such settings, ubiquitous boundaries and interfaces can trap the system in a kinetically favored but metastable state, devoid of long-range order. This makes it extremely difficult to achieve ordered structures in micro/nano-patterning techniques that rely on sessile microdroplets, such as inkjet printing, dip-pen lithography, and contact printing.In stark contrast to sessile droplets, capillary bridges─formed by liquids confined between two solid surfaces─provide unique opportunities for understanding the long-range-ordered self-assembly of crystalline materials under spatial confinement. Because capillary bridges are stabilized by Laplace pressure, which is inversely proportional to the feature size, the confinement and manipulation of solutions or suspensions of functional materials at the nanoscale become accessible through the rational design of surface chemistry and geometry. Although global thermodynamic equilibrium is unattainable in evaporative systems, ordered nucleation and packing of constituent components can be locally realized at the contact line of capillary bridges. This enables the unprecedented fabrication of long-range-ordered micro/nanostructures with deterministic patterns.In this Account, we review the advancements in long-range-ordered self-assembly of crystalline micro/nanostructures under confinement. First, we briefly introduce crystalline materials characterized by strong intramolecular interactions and relatively weak intermolecular forces, analyzing both the opportunities and challenges inherent to self-assembled nanomaterials. Next, we delve into the construction and manipulation of confined liquids, focusing especially on capillary bridges controlled by engineered chemistry and geometry to regulate Laplace pressure. Through this approach, we have achieved capillary bridges with thicknesses on the order of a few nanometers and wafer-scale homogeneity, facilitating the self-assembly of ordered structures. Supported by factors such as local free-volume entropy, electrostatic interactions, curvilinear geometry, directional microfluidics, and nanoconfinement, we have achieved long-range-ordered, deterministic patterning of organic semiconductors, metal-halide perovskites, and colloidal nanocrystal superlattices using this capillary-bridge platform. These long-range microstructures serve as a bridge between nanomaterials and integrated devices, enabling emergent functionalities like intrinsic stretchability, giant photoconductivity, propagating and interacting exciton polaritons, and spin-valley-locked lasing, which are otherwise unattainable in disordered materials. Finally, we discuss potential directions for both the fundamental understanding and practical applications of confined self-assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐凤年发布了新的文献求助10
1秒前
1秒前
2秒前
小马甲应助如沐春风采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
美好斓驳回了852应助
4秒前
4秒前
syn发布了新的文献求助10
5秒前
5秒前
echo完成签到,获得积分10
5秒前
完美世界应助xiaoyuan采纳,获得10
6秒前
miemie发布了新的文献求助10
6秒前
安好发布了新的文献求助10
7秒前
Galato发布了新的文献求助10
7秒前
8秒前
温大善人发布了新的文献求助10
8秒前
lq发布了新的文献求助10
9秒前
9秒前
10秒前
Zx_1993应助木子采纳,获得10
10秒前
echo发布了新的文献求助10
10秒前
11秒前
汉堡包应助曹志毅采纳,获得10
12秒前
传奇3应助眼睛大若南采纳,获得10
13秒前
SciGPT应助ZZzz采纳,获得10
13秒前
000发布了新的文献求助10
14秒前
14秒前
科研通AI6应助失眠的紫翠采纳,获得10
15秒前
山月发布了新的文献求助10
15秒前
吟賞烟霞完成签到,获得积分10
15秒前
机智绝悟完成签到,获得积分10
16秒前
行风发布了新的文献求助10
16秒前
haomozc完成签到,获得积分10
18秒前
liujiaqi完成签到,获得积分10
18秒前
机智绝悟发布了新的文献求助10
18秒前
Galato完成签到,获得积分10
19秒前
小杨九分甜完成签到,获得积分10
19秒前
xquinn发布了新的文献求助10
20秒前
安好完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073256
求助须知:如何正确求助?哪些是违规求助? 4293380
关于积分的说明 13378282
捐赠科研通 4114827
什么是DOI,文献DOI怎么找? 2253172
邀请新用户注册赠送积分活动 1257983
关于科研通互助平台的介绍 1190836