Nitrogen Doping in NiS/Ni3S4 Nanowire-Based Electrocatalysts for Promoting the Second-Order Hydrogen Evolution Reaction

电催化剂 纳米线 催化作用 电化学 掺杂剂 制氢 本体电解 分解水 材料科学 兴奋剂 纳米技术 电解 化学工程 无机化学 化学 物理化学 光催化 电极 循环伏安法 光电子学 有机化学 工程类 电解质
作者
Imtiaz Ahmed,Saptarshi Ghosh Dastider,Ayan Roy,Krishnakanta Mondal,Krishna Kanta Haldar
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (1): 661-671 被引量:6
标识
DOI:10.1021/acsanm.3c04807
摘要

In electrochemistry, predicting the mechanistic pathway for the hydrogen evolution reaction (HER) can be challenging, as it is constantly altered by the electronic and geometrical structures of the surface of the electrocatalyst. However, through a combined experimental and theoretical approach, we have successfully demonstrated the functions of nitrogen (N) dopants in NiS/Ni3S4 catalysts. Here, we have developed a cost-effective, environmentally friendly, and highly efficient electrochemical HER catalyst using a N-doped NiS/Ni3S4 nanowire via a hydrothermal approach and calcination method to incorporate different concentrations (1, 3, 6, 8, and 10%) of nitrogen. These electrocatalysts were synthesized to efficiently produce hydrogen from water. Interestingly, the 6% nitrogen-doped NiS/Ni3S4 nanowire electrocatalyst exhibited superior catalytic HER. The inclusion of N dopants has distinct functions, including the activation of the HER catalytic activity of NiS/Ni3S4 by augmenting the number of active sites on its surface. This enables second-order H2 production, which has been shown through extensive electrochemical analyses. The active sites for the HER in N-doped NiS/Ni3S4 nanowires have been identified using density functional theory-based calculations, which reveal that the strong hybridizations of 3d orbitals of Ni and 2p of S and N near the Fermi level result in the distribution of conduction charges across the N-doped surface. Our experimental and theoretical combined investigation indicates that the superior HER activity of N-doped NiS/Ni3S4 nanowires is promising for the sustainable production of hydrogen using electrolysis of water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张三发布了新的文献求助10
1秒前
K13发布了新的文献求助10
2秒前
爆米花应助XIAOLI采纳,获得30
2秒前
谢昱发布了新的文献求助10
3秒前
7秒前
Lucas应助墨尔根戴青采纳,获得10
8秒前
一一完成签到,获得积分10
10秒前
K13完成签到,获得积分10
11秒前
顺顺尼发布了新的文献求助10
11秒前
yao完成签到,获得积分10
15秒前
16秒前
momo完成签到,获得积分10
16秒前
18秒前
qweqwe完成签到,获得积分10
19秒前
21秒前
22秒前
打打应助流浪的鲨鱼采纳,获得10
23秒前
顺顺尼完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
24秒前
尔东发布了新的文献求助30
25秒前
良辰应助研友_西门孤晴采纳,获得10
25秒前
26秒前
FXT完成签到 ,获得积分10
26秒前
27秒前
27秒前
ynchendt发布了新的文献求助10
27秒前
多啦a萌发布了新的文献求助10
29秒前
32秒前
32秒前
33秒前
英俊的铭应助多啦a萌采纳,获得10
34秒前
38秒前
周舟发布了新的文献求助10
39秒前
39秒前
41秒前
42秒前
nn发布了新的文献求助10
45秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842826
求助须知:如何正确求助?哪些是违规求助? 3384821
关于积分的说明 10537552
捐赠科研通 3105393
什么是DOI,文献DOI怎么找? 1710250
邀请新用户注册赠送积分活动 823571
科研通“疑难数据库(出版商)”最低求助积分说明 774149