A Network Security Situation Prediction Method Based On SSA-GResNeSt

计算机科学 网络安全 人工智能 数据挖掘 计算机安全
作者
Dongmei Zhao,Guoqing Ji,Shujun Zhang,Xunzheng Han,Shuiguang Zeng
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3498-3510
标识
DOI:10.1109/tnsm.2024.3373663
摘要

Convolutional neural networks have been widely used in intrusion detection and proactive network defense strategies such as network security situation prediction (NSSP). The interaction between cross-channel features and the dependencies between elements in the input data are essential factors that affect the prediction model's performance. However, existing works have ignored these, resulting in performance that needs to be improved. To this end, we propose a GResNeSt model that combines the advantages of the global context block and ResNeSt to improve the NSSP performance. The GResNeSt model strengthens traditional convolutional neural networks in two ways: it effectively captures cross-feature interactions and obtains long-range dependencies of the input data. This enhances its performance in capturing associations among different elements, making it more effective in extracting critical information from data to identify network attacks. We used the Salp swarm algorithm to select optimal hyperparameters for improving the model's performance. Furthermore, based on the attack impact, we calculated network security situation values of two public network datasets. Finally, comprehensive experiments on the datasets verified our model design and demonstrated that our scheme is superior to other models in terms of NSSP ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄坤完成签到,获得积分10
刚刚
小二郎应助yohana采纳,获得10
刚刚
刚刚
Siney完成签到,获得积分10
1秒前
Ning00000发布了新的文献求助10
1秒前
大大怪发布了新的文献求助20
2秒前
3秒前
Diego完成签到,获得积分10
3秒前
5秒前
ZZZZZZZZF应助reb采纳,获得10
5秒前
mymEN发布了新的文献求助10
5秒前
大模型应助gtl采纳,获得30
6秒前
zxt完成签到,获得积分10
6秒前
缓慢的博完成签到,获得积分20
8秒前
杨桃发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
zhen完成签到,获得积分10
9秒前
123发布了新的文献求助10
10秒前
10秒前
鸡蛋花干夹馍完成签到,获得积分10
10秒前
阳光的紫易完成签到,获得积分10
11秒前
情怀应助想要发文章采纳,获得10
11秒前
12秒前
13秒前
14秒前
15秒前
zyy完成签到,获得积分20
16秒前
16秒前
生命化育发布了新的文献求助10
17秒前
隐形曼青应助蓝莓贝果采纳,获得10
17秒前
福同学完成签到,获得积分10
17秒前
wll1091完成签到 ,获得积分10
18秒前
酷波er应助优雅冰海采纳,获得10
19秒前
无限白易应助ll采纳,获得20
20秒前
yongyou发布了新的文献求助30
21秒前
chengzi发布了新的文献求助10
22秒前
一见憘关注了科研通微信公众号
22秒前
24秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840267
求助须知:如何正确求助?哪些是违规求助? 3382409
关于积分的说明 10523711
捐赠科研通 3101986
什么是DOI,文献DOI怎么找? 1708519
邀请新用户注册赠送积分活动 822527
科研通“疑难数据库(出版商)”最低求助积分说明 773385