DA-GNN: A smart contract vulnerability detection method based on Dual Attention Graph Neural Network

计算机科学 智能合约 可扩展性 脆弱性(计算) 依赖关系图 图形 数据库事务 节点(物理) 数据挖掘 计算机安全 理论计算机科学 数据库 结构工程 工程类
作者
Zixian Zhen,Xiangfu Zhao,J. Zhang,Yichen Wang,Haiyue Chen
出处
期刊:Computer Networks [Elsevier BV]
卷期号:242: 110238-110238 被引量:8
标识
DOI:10.1016/j.comnet.2024.110238
摘要

A smart contract is an automated computer program based on blockchain technology. In recent years, the security incidents of smart contracts have caused serious economic losses. However, existing smart contract vulnerability detection methods rely on fixed expert rules, resulting in reduced detection accuracy and scalability. Therefore, addressing the issues of low accuracy in traditional smart contract vulnerability detection methods and the insufficient feature extraction in neural network-based approaches for smart contracts, this paper introduces an intelligent contract vulnerability identification method, Dual Attention Graph Neural Network (DA-GNN). Firstly, DA-GNN transforms the operation code sequence of nodes in the smart contract Control Flow Graph (CFG) into a feature matrix of semantic features and relationships between nodes based on the five types of instructions we propose. Secondly, our proposed dual attention mechanism introduces node semantic features and relationship features between nodes into the GAT to achieve node embedding updates. The updated graph node information is fused through self-attention mechanism to obtain the graph features. Then, the classification and prediction of vulnerabilities are achieved through the classification module. Finally, we evaluated our method on 17,670 real smart contracts. The experimental results show that the precision in detecting integer overflow vulnerabilities, self-destruct vulnerabilities, and transaction sequence dependency vulnerabilities reaches 72.17%, 67.03%, and 73.66%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
残幻完成签到,获得积分10
2秒前
小二郎应助科研通管家采纳,获得10
3秒前
迟大猫应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
迟大猫应助科研通管家采纳,获得10
3秒前
lulu应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研小民工应助科研通管家采纳,获得200
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得30
4秒前
Hello应助科研通管家采纳,获得10
4秒前
zbszd应助科研通管家采纳,获得30
4秒前
慕青应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得20
4秒前
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
1+1应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
松月完成签到,获得积分10
6秒前
Jenlisa完成签到 ,获得积分10
6秒前
香蕉觅云应助baifan采纳,获得10
8秒前
10秒前
kkkkk完成签到,获得积分10
12秒前
墨墨Daisy完成签到,获得积分20
12秒前
青蛙的第二滴口水完成签到,获得积分10
14秒前
hay完成签到,获得积分10
15秒前
betty2009发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671598
求助须知:如何正确求助?哪些是违规求助? 3228309
关于积分的说明 9779385
捐赠科研通 2938622
什么是DOI,文献DOI怎么找? 1610143
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093