Cationic lipids from multi-component Passerini reaction for non-viral gene delivery: A structure-activity relationship study

阳离子聚合 化学 转染 基因传递 细胞毒性 哌啶 酰胺 胺气处理 组合化学 立体化学 有机化学 生物化学 基因 体外
作者
Jiajia Chen,Yu Guo,Rong Wang,Huizhen Yang,Xiao‐Qi Yu,Ji Zhang
出处
期刊:Bioorganic & Medicinal Chemistry [Elsevier BV]
卷期号:100: 117635-117635 被引量:2
标识
DOI:10.1016/j.bmc.2024.117635
摘要

Although many types of cationic lipids have been developed as efficient gene vectors, the construction of lipid molecules with simple procedures remains challenging. Passerini reaction, as a classic multicomponent reaction, could directly give the α-acyloxycarboxamide products with biodegradable ester and amide bonds. Herein, two series of novel cationic lipids with heterocyclic pyrrolidine and piperidine as headgroups were synthesized through Passerini reaction (P-series) and amide condensation (A-series), and relevant structure-activity relationships on their gene delivery capability was studied. It was found that although both of the two series of lipids could form lipid nanoparticles (LNPs) which could effectively condense DNA, the LNP derived from P-series lipids showed higher transfection efficiency, serum tolerance, cellular uptake, and lower cytotoxicity. Unlike the A-series LNPs, the P-series LNPs showed quite different structure-activity relationship, in which the relative site of the secondary amine had significant effect on the transfection performance. The othro-isomers of the P-series lipids had lower cytotoxicity, but poor transfection efficiency, which was probably due to their unstable nature. Taken together, this study not only validated the feasibility of Passerini reaction for the construction of cationic lipids for gene delivery, but also afforded some clues for the rational design of effective non-viral lipidic gene vectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助田小姐采纳,获得10
刚刚
刚刚
彩色的以莲完成签到,获得积分10
1秒前
酷波er应助kk99采纳,获得10
1秒前
1秒前
科研通AI5应助dllllll采纳,获得10
1秒前
1秒前
1秒前
2秒前
爆米花应助花花采纳,获得10
2秒前
皮皮虾完成签到,获得积分10
3秒前
小兔叽完成签到,获得积分10
3秒前
Ly啦啦啦发布了新的文献求助10
3秒前
科研通AI5应助佩佩采纳,获得10
3秒前
吃货完成签到,获得积分10
4秒前
cdercder应助轻松的茉莉采纳,获得10
4秒前
6秒前
柯续缘发布了新的文献求助10
6秒前
上好佳完成签到,获得积分10
6秒前
6秒前
6秒前
传奇3应助zhiyao2025采纳,获得10
6秒前
鱼儿会飞完成签到,获得积分10
7秒前
mlzmlz完成签到,获得积分0
7秒前
Ll_l完成签到,获得积分10
7秒前
Xiaoqiang发布了新的文献求助10
7秒前
杨羕发布了新的文献求助10
8秒前
狗俊关注了科研通微信公众号
8秒前
klkl完成签到,获得积分10
8秒前
张朝程完成签到,获得积分10
8秒前
8秒前
田小姐完成签到,获得积分10
9秒前
大河向东刘先生完成签到,获得积分10
9秒前
9秒前
9秒前
CipherSage应助糊涂的元珊采纳,获得30
9秒前
吁愚雨豫完成签到 ,获得积分10
10秒前
10秒前
Chen应助gg采纳,获得20
10秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011