亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EDiffSR: An Efficient Diffusion Probabilistic Model for Remote Sensing Image Super-Resolution

计算机科学 概率逻辑 编码(集合论) 噪音(视频) 频道(广播) 图像(数学) 人工智能 深度学习 机器学习 计算机网络 集合(抽象数据类型) 程序设计语言
作者
Yi Xiao,Qiangqiang Yuan,Kui Jiang,Jiang He,Xianyu Jin,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:117
标识
DOI:10.1109/tgrs.2023.3341437
摘要

Recently, convolutional networks have achieved remarkable development in remote sensing image (RSI) super-resolution (SR) by minimizing the regression objectives, e.g., MSE loss. However, despite achieving impressive performance, these methods often suffer from poor visual quality with oversmooth issues. Generative adversarial networks (GANs) have the potential to infer intricate details, but they are easy to collapse, resulting in undesirable artifacts. To mitigate these issues, in this article, we first introduce diffusion probabilistic model (DPM) for efficient RSI SR, dubbed efficient diffusion model for RSI SR (EDiffSR). EDiffSR is easy to train and maintains the merits of DPM in generating perceptual-pleasant images. Specifically, different from previous works using heavy UNet for noise prediction, we develop an efficient activation network (EANet) to achieve favorable noise prediction performance by simplified channel attention and simple gate operation, which dramatically reduces the computational budget. Moreover, to introduce more valuable prior knowledge into the proposed EDiffSR, a practical conditional prior enhancement module (CPEM) is developed to help extract an enriched condition. Unlike most DPM-based SR models that directly generate conditions by amplifying LR images, the proposed CPEM helps to retain more informative cues for accurate SR. Extensive experiments on four remote sensing datasets demonstrate that EDiffSR can restore visual-pleasant images on simulated and real-world RSIs, both quantitatively and qualitatively. The code of EDiffSR will be available at https://github.com/XY-boy/EDiffSR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
qqq完成签到,获得积分10
11秒前
sissiarno完成签到,获得积分0
28秒前
vitamin完成签到 ,获得积分10
29秒前
34秒前
1分钟前
1分钟前
1分钟前
1分钟前
js发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
FashionBoy应助js采纳,获得10
2分钟前
2分钟前
lf发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
IU冰冰完成签到 ,获得积分10
3分钟前
4分钟前
lf发布了新的文献求助10
4分钟前
耕牛热完成签到,获得积分10
4分钟前
CES_SH应助周大炮采纳,获得50
4分钟前
Tumumu完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
蔡佰航发布了新的文献求助10
5分钟前
6分钟前
7分钟前
田様应助andrele采纳,获得10
7分钟前
星辰大海应助科研通管家采纳,获得10
7分钟前
赘婿应助果奶绝甜采纳,获得10
7分钟前
李健的小迷弟应助andrele采纳,获得10
7分钟前
bji发布了新的文献求助10
8分钟前
科研通AI6应助大熊采纳,获得10
8分钟前
深情安青应助andrele采纳,获得10
8分钟前
高分求助中
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4392798
求助须知:如何正确求助?哪些是违规求助? 3882946
关于积分的说明 12090433
捐赠科研通 3526914
什么是DOI,文献DOI怎么找? 1935480
邀请新用户注册赠送积分活动 976495
科研通“疑难数据库(出版商)”最低求助积分说明 874167