A Comprehensive Survey on Graph Summarization With Graph Neural Networks

自动汇总 计算机科学 标杆管理 图形 人工智能 数据科学 理论计算机科学 机器学习 营销 业务
作者
Nasrin Shabani,Jia Wu,Amin Beheshti,Quan Z. Sheng,Jin Foo,Venus Haghighi,Ambreen Hanif,Maryam Shahabikargar
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (8): 3780-3800 被引量:14
标识
DOI:10.1109/tai.2024.3350545
摘要

As large-scale graphs become more widespread, more and more computational challenges with extracting, processing, and interpreting large graph data are being exposed. It is therefore natural to search for ways to summarize these expansive graphs while preserving their key characteristics. In the past, most graph summarization techniques sought to capture the most important part of a graph statistically. However, today, the high dimensionality and complexity of modern graph data are making deep learning techniques more popular. Hence, this paper presents a comprehensive survey of progress in deep learning summarization techniques that rely on graph neural networks (GNNs). Our investigation includes a review of the current state-of-the-art approaches, including recurrent GNNs, convolutional GNNs, graph autoencoders, and graph attention networks. A new burgeoning line of research is also discussed where graph reinforcement learning is being used to evaluate and improve the quality of graph summaries. Additionally, the survey provides details of benchmark datasets, evaluation metrics, and open-source tools that are often employed in experimentation settings, along with a detailed comparison, discussion, and takeaways for the research community focused on graph summarization. Finally, the survey concludes with a number of open research challenges to motivate further study in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxy完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
堂吉诃德完成签到,获得积分10
4秒前
年糕菌发布了新的文献求助10
5秒前
堂吉诃德发布了新的文献求助10
7秒前
小马甲应助企鹅QQ采纳,获得30
7秒前
Hello应助七寻采纳,获得10
7秒前
如意翠桃发布了新的文献求助10
7秒前
青菜虫子完成签到 ,获得积分10
8秒前
果子完成签到,获得积分20
9秒前
9秒前
9秒前
你哥的完成签到,获得积分10
9秒前
在水一方应助Bepa采纳,获得10
10秒前
11秒前
11秒前
超级雨完成签到,获得积分10
13秒前
13秒前
果子发布了新的文献求助10
13秒前
乐乐应助尊敬的惠采纳,获得10
15秒前
15秒前
Paustino发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
cjdsb发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
21秒前
21秒前
21秒前
21秒前
肚皮完成签到 ,获得积分10
21秒前
七寻发布了新的文献求助10
21秒前
22秒前
susan完成签到,获得积分10
23秒前
glacierflame发布了新的文献求助10
24秒前
秋日七韵发布了新的文献求助10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247981
求助须知:如何正确求助?哪些是违规求助? 3781089
关于积分的说明 11871237
捐赠科研通 3434022
什么是DOI,文献DOI怎么找? 1884739
邀请新用户注册赠送积分活动 936340
科研通“疑难数据库(出版商)”最低求助积分说明 842216