A Robust and Efficient Federated Learning Algorithm Against Adaptive Model Poisoning Attacks

计算机科学 维数之咒 稳健性(进化) 算法 人工智能 数据挖掘 生物化学 化学 基因
作者
Han Yang,Dongbing Gu,Jianhua He
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (9): 16289-16302 被引量:7
标识
DOI:10.1109/jiot.2024.3351371
摘要

With the undetectable characteristic, adaptive model poisoning attacks can combine with any other attacks, bypassing the detection and violating the availability of federated learning (FL) systems. Existing defences are vulnerable to adaptive model poisoning attacks, as model poisoning-related features are tailored to these methods and compromise the accuracy of the FL model. We first present a unified reformulation of existing adaptive model poisoning attacks. Analyzing the reformulated attacks, we find that the detectors should reduce the attacker's optimization cost functions to defeat adaptive attacks. However, existing defences do not consider the causes of model parameters' high dimensionality and data heterogeneity. We propose a novel robust FL algorithm, FedDet, to tackle the problems. By splitting the local models into layers for robust aggregation, FedDet can overcome the issue with high dimensionality while keeping the functionality of layers. During the robust aggregation, FedDet normalizes every slice of local models by the median norm value instead of excluding some clients, which can avoid deviation from the optimal model. Furthermore, we conduct a comprehensive security analysis of FedDet and an existing robust aggregation method. We propose the upper bounds on the perturbations disturbed by these adaptive attacks. It is found that FedDet can be more robust than Krum with a smaller perturbation upper bound under attacks. We evaluate the performance of FedDet and four baseline methods against these attacks under two classic data sets. It demonstrates that FedDet significantly outperforms the existing compared methods against adaptive attacks. FedDet can achieve 60.72% accuracy against min–max attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mof发布了新的文献求助10
6秒前
小刘完成签到,获得积分10
6秒前
11发布了新的文献求助10
7秒前
很傻的狗完成签到,获得积分0
10秒前
科目三应助huangdq6采纳,获得10
11秒前
科研通AI6应助aliu采纳,获得10
11秒前
AAA建材批发原哥完成签到,获得积分10
12秒前
13秒前
朝歌完成签到,获得积分10
14秒前
科研通AI5应助莫菲采纳,获得10
15秒前
共享精神应助22222采纳,获得10
16秒前
斯文可仁发布了新的文献求助10
18秒前
大个应助11采纳,获得10
18秒前
医学生Mavis完成签到,获得积分10
19秒前
平常的可乐完成签到 ,获得积分10
20秒前
在水一方应助小海采纳,获得10
21秒前
ZYSNNNN完成签到,获得积分10
23秒前
23秒前
JKL77完成签到 ,获得积分10
24秒前
春风十里完成签到 ,获得积分10
25秒前
背后尔容完成签到,获得积分10
25秒前
大个应助wj采纳,获得10
26秒前
研友_VZG7GZ应助LiuChuannan采纳,获得10
26秒前
26秒前
28秒前
杆杆发布了新的文献求助10
28秒前
小坚果完成签到 ,获得积分10
30秒前
莫菲发布了新的文献求助10
31秒前
32秒前
junzilan发布了新的文献求助10
32秒前
可爱的函函应助mof采纳,获得10
32秒前
34秒前
35秒前
kk发布了新的文献求助10
37秒前
小葱头应助搭碰采纳,获得10
37秒前
38秒前
39秒前
41秒前
aliu发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Development in Infancy 400
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4793399
求助须知:如何正确求助?哪些是违规求助? 4115472
关于积分的说明 12731888
捐赠科研通 3843739
什么是DOI,文献DOI怎么找? 2118726
邀请新用户注册赠送积分活动 1140857
关于科研通互助平台的介绍 1029293