Classification of pathogenic bacteria by Raman spectroscopy combined with variational auto‐encoder and deep learning

拉曼光谱 人工智能 编码器 噪音(视频) 计算机科学 模式识别(心理学) 深度学习 生物系统 鉴定(生物学) 生物 物理 光学 植物 操作系统 图像(数学)
作者
Bo Liu,Kunxiang Liu,Jide Sun,Lindong Shang,Qingxiang Yang,Xueping Chen,Bei Li
出处
期刊:Journal of Biophotonics [Wiley]
卷期号:16 (4) 被引量:7
标识
DOI:10.1002/jbio.202200270
摘要

Rapid and early identification of pathogens is critical to guide antibiotic therapy. Raman spectroscopy as a noninvasive diagnostic technique provides rapid and accurate detection of pathogens. Raman spectrum of single cells serves as the "fingerprint" of the cell, revealing its metabolic characteristics. Rapid identification of pathogens can be achieved by combining Raman spectroscopy and deep learning. Traditional classification techniques frequently require lots of data for training, which is time costing to collect Raman spectra. For trace samples and strains that are difficult to culture, it is difficult to provide an accurate classification model. In order to reduce the number of samples collected and improve the accuracy of the classification model, a new pathogen detection method integrating Raman spectroscopy, variational auto-encoder (VAE), and long short-term memory network (LSTM) is proposed in this paper. We collect the Raman signals of pathogens and input them to VAE for training. VAE will generate a large number of Raman spectral data that cannot be distinguished from the real spectrum, and the signal-to-noise ratio is higher than that of the real spectrum. These spectra are input into the LSTM together with the real spectrum for training, and a good classification model is obtained. The results of the experiments reveal that this method not only improves the average accuracy of pathogen classification to 96.9% but also reduces the number of Raman spectra collected from 1000 to 200. With this technology, the number of Raman spectra collected can be greatly reduced, so that strains that are difficult to culture or trace can be rapidly identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hou完成签到,获得积分10
2秒前
脚踏实滴完成签到 ,获得积分10
3秒前
所所应助文文采纳,获得10
5秒前
carly完成签到 ,获得积分10
5秒前
巴拉巴拉完成签到 ,获得积分10
6秒前
zhangyujin完成签到,获得积分10
12秒前
mylian完成签到,获得积分10
12秒前
乌拉拉完成签到,获得积分10
12秒前
邢夏之完成签到 ,获得积分10
13秒前
LIUqi完成签到,获得积分20
16秒前
18秒前
呃呃呃c应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
FelixChen应助科研通管家采纳,获得10
18秒前
彭于彦祖应助科研通管家采纳,获得20
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
18秒前
呃呃呃c应助科研通管家采纳,获得10
18秒前
19秒前
21秒前
zzh完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
元神完成签到 ,获得积分10
23秒前
mylian发布了新的文献求助10
24秒前
AAASD完成签到 ,获得积分10
26秒前
亚亚完成签到 ,获得积分10
26秒前
内向苡完成签到,获得积分10
28秒前
默默完成签到,获得积分10
31秒前
supersunshine完成签到,获得积分10
34秒前
开朗娩完成签到 ,获得积分10
35秒前
Owen应助武雨寒采纳,获得10
36秒前
Aloha完成签到 ,获得积分10
37秒前
feiying88发布了新的文献求助10
39秒前
鸡蛋饼波比完成签到 ,获得积分10
43秒前
尚可完成签到 ,获得积分10
44秒前
舆上帝同行完成签到,获得积分10
47秒前
48秒前
49秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864053
求助须知:如何正确求助?哪些是违规求助? 3406339
关于积分的说明 10649231
捐赠科研通 3130285
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990