Optimization Assisted by Neural Network-Based Machine Learning in Electromagnetic Applications

人工神经网络 计算机科学 人工智能
作者
Anastasios Papathanasopoulos,Pavlos Athanasios Apostolopoulos,Yahya Rahmat‐Samii
出处
期刊:IEEE Transactions on Antennas and Propagation [Institute of Electrical and Electronics Engineers]
卷期号:72 (1): 160-173 被引量:24
标识
DOI:10.1109/tap.2023.3269883
摘要

We introduce an optimization assisted by a neural network (ONN) predictor to the electromagnetic community. ONN belongs to the class of the surrogate model-based optimization approaches, and approximates the objective function using a nonlinear approximator—neural network. We provide a comprehensive description of the ONN algorithm and the details of its mathematical formulations. We apply ONN to optimize three popular benchmark functions and compare its performance with some commonly used optimization algorithms, namely particle swarm optimization (PSO), genetic algorithm (GA), and Bayesian optimization (BO). For the first time, we demonstrate ONN's applicability and effectiveness in antenna design problems by optimizing a six-element Yagi-Uda antenna and by solving a challenging 10-D dual-band slotted patch antenna constrained optimization problem. To achieve this, ONN is linked with a full-wave electromagnetic simulation solver through an application user interface. The optimized slotted patch is fabricated and measured to demonstrate how ONN can be part of the full antenna design process. Our empirical results indicate that ONN requires less objective function evaluations to reach the same qualitative point and reaches better optimal points for the same number of iterations for the studied benchmark functions and antenna optimization problems compared to the aforementioned baseline optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兰先生发布了新的文献求助10
1秒前
1秒前
科研狗发布了新的文献求助10
1秒前
害怕的水之完成签到,获得积分10
1秒前
111发布了新的文献求助10
2秒前
菠萝冰完成签到,获得积分10
2秒前
Derik完成签到,获得积分10
2秒前
脑洞疼应助明亮冬瓜采纳,获得10
2秒前
外向可冥完成签到,获得积分10
2秒前
123455完成签到,获得积分10
2秒前
3秒前
3秒前
强健的弱发布了新的文献求助10
3秒前
辛勤的绮兰完成签到,获得积分10
3秒前
AKYDXS完成签到,获得积分10
4秒前
李WB完成签到,获得积分10
4秒前
4秒前
kkk发布了新的文献求助10
4秒前
元66666完成签到 ,获得积分10
4秒前
yjj6809完成签到,获得积分10
5秒前
RTena.发布了新的文献求助10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得80
5秒前
冰淇淋啦啦啦完成签到,获得积分20
5秒前
无花果应助科研通管家采纳,获得10
5秒前
Raven应助科研通管家采纳,获得10
5秒前
宝海青完成签到,获得积分10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
0美团外卖0完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
Green完成签到,获得积分10
6秒前
研友_VZG7GZ应助BR采纳,获得30
6秒前
Hello应助科研通管家采纳,获得10
6秒前
呵呵应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392