Patient selection for proton therapy using Normal Tissue Complication Probability with deep learning dose prediction for oropharyngeal cancer

质子疗法 放射治疗 人工智能 深度学习 卷积神经网络 癌症 放射治疗计划 医学 医学物理学 机器学习 计算机科学 核医学 放射科 内科学
作者
Margerie Huet‐Dastarac,Steven Michiels,Sara Teruel Rivas,Hamdiye Ozan,Edmond Sterpin,John A. Lee,Ana María Barragán Montero
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6201-6214 被引量:12
标识
DOI:10.1002/mp.16431
摘要

Abstract Background In cancer care, determining the most beneficial treatment technique is a key decision affecting the patient's survival and quality of life. Patient selection for proton therapy (PT) over conventional radiotherapy (XT) currently entails comparing manually generated treatment plans, which requires time and expertise. Purpose We developed an automatic and fast tool, AI‐PROTIPP (Artificial Intelligence Predictive Radiation Oncology Treatment Indication to Photons/Protons), that assesses quantitatively the benefits of each therapeutic option. Our method uses deep learning (DL) models to directly predict the dose distributions for a given patient for both XT and PT. By using models that estimate the Normal Tissue Complication Probability (NTCP), namely the likelihood of side effects to occur for a specific patient, AI‐PROTIPP can propose a treatment selection quickly and automatically. Methods A database of 60 patients presenting oropharyngeal cancer, obtained from the Cliniques Universitaires Saint Luc in Belgium, was used in this study. For every patient, a PT plan and an XT plan were generated. The dose distributions were used to train the two dose DL prediction models (one for each modality). The model is based on U‐Net architecture, a type of convolutional neural network currently considered as the state of the art for dose prediction models. A NTCP protocol used in the Dutch model‐based approach, including grades II and III xerostomia and grades II and III dysphagia, was later applied in order to perform automatic treatment selection for each patient. The networks were trained using a nested cross‐validation approach with 11‐folds. We set aside three patients in an outer set and each fold consists of 47 patients in training, five in validation and five for testing. This method allowed us to assess our method on 55 patients (five patients per test times the number of folds). Results The treatment selection based on the DL‐predicted doses reached an accuracy of 87.4% for the threshold parameters set by the Health Council of the Netherlands. The selected treatment is directly linked with these threshold parameters as they express the minimal gain brought by the PT treatment for a patient to be indicated to PT. To validate the performance of AI‐PROTIPP in other conditions, we modulated these thresholds, and the accuracy was above 81% for all the considered cases. The difference in average cumulative NTCP per patient of predicted and clinical dose distributions is very similar (less than 1% difference). Conclusions AI‐PROTIPP shows that using DL dose prediction in combination with NTCP models to select PT for patients is feasible and can help to save time by avoiding the generation of treatment plans only used for the comparison. Moreover, DL models are transferable, allowing, in the future, experience to be shared with centers that would not have PT planning expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助Jun采纳,获得10
刚刚
懵懂的柚子完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
陈富超发布了新的文献求助10
1秒前
3秒前
bkagyin应助Xavier采纳,获得10
3秒前
情怀应助Xavier采纳,获得10
3秒前
蜜蜜芪完成签到 ,获得积分10
3秒前
科研通AI2S应助冰墩墩采纳,获得30
4秒前
ab发布了新的文献求助10
4秒前
4秒前
1526完成签到,获得积分10
4秒前
Haiqi完成签到,获得积分10
4秒前
无花果应助zz采纳,获得10
5秒前
今后应助生生采纳,获得10
5秒前
苹果文博发布了新的文献求助10
5秒前
SKY完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
lianliyou发布了新的文献求助10
6秒前
烟花应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
7秒前
曲线应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
曲线应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
李健的小迷弟应助小C采纳,获得10
8秒前
8秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241592
求助须知:如何正确求助?哪些是违规求助? 4408299
关于积分的说明 13721568
捐赠科研通 4277372
什么是DOI,文献DOI怎么找? 2347152
邀请新用户注册赠送积分活动 1344193
关于科研通互助平台的介绍 1302357