Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting

计算机科学 学习迁移 加权 人工智能 机器学习 特征(语言学) 深度学习 多源 数据挖掘 GSM演进的增强数据速率 分歧(语言学) 先验与后验 医学 语言学 哲学 统计 数学 认识论 放射科
作者
Yilun Jin,Kai Chen,Qiang Yang
标识
DOI:10.1145/3534678.3539250
摘要

Deep learning models have been demonstrated powerful in modeling complex spatio-temporal data for traffic prediction. In practice, effective deep traffic prediction models rely on large-scale traffic data, which is not always available in real-world scenarios. To alleviate the data scarcity issue, a promising way is to use cross-city transfer learning methods to fine-tune well-trained models from source cities with abundant data. However, existing approaches overlook the divergence between source and target cities, and thus, the trained model from source cities may contain noise or even harmful source knowledge. To address the problem, we propose CrossTReS, a selective transfer learning framework for traffic prediction that adaptively re-weights source regions to assist target fine-tuning. As a general framework for fine-tuning-based cross-city transfer learning, CrossTReS consists of a feature network, a weighting network, and a prediction model. We train the feature network with node- and edge-level domain adaptation techniques to learn generalizable spatial features for both source and target cities. We further train the weighting network via source-target joint meta-learning such that source regions helpful to target fine-tuning are assigned high weights. Finally, the prediction model is selectively trained on the source city with the learned weights to initialize target fine-tuning. We evaluate CrossTReS using real-world taxi and bike data, where under the same settings, CrossTReS outperforms state-of-the-art baselines by up to 8%. Moreover, the learned region weights offer interpretable visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yulk发布了新的文献求助10
1秒前
2秒前
victor完成签到,获得积分10
2秒前
2秒前
WQ发布了新的文献求助10
2秒前
3秒前
酷波er应助俊逸的蛋挞采纳,获得10
3秒前
EvaHo完成签到,获得积分10
5秒前
司空大有发布了新的文献求助10
6秒前
微笑耳机发布了新的文献求助10
7秒前
Pikno123完成签到,获得积分10
7秒前
7秒前
曹飒丽完成签到,获得积分10
7秒前
小王发布了新的文献求助10
8秒前
8秒前
科研通AI5应助落寞的怜雪采纳,获得10
8秒前
SYLH应助kk采纳,获得10
9秒前
高兴电脑完成签到,获得积分20
9秒前
斯文败类应助kk采纳,获得10
9秒前
初心发布了新的文献求助10
11秒前
12秒前
研友_LwlRen发布了新的文献求助10
12秒前
15秒前
烊驼完成签到,获得积分10
17秒前
17秒前
Tonto发布了新的文献求助10
18秒前
cdercder应助秀丽的正豪采纳,获得10
18秒前
电气工人完成签到,获得积分10
19秒前
21秒前
微笑耳机完成签到,获得积分10
22秒前
22秒前
Qingzhu应助apple9515采纳,获得10
22秒前
23秒前
木木完成签到,获得积分10
25秒前
25秒前
26秒前
大模型应助hanshuo4400采纳,获得10
27秒前
晓听竹雨发布了新的文献求助10
28秒前
研友_8yX0xZ完成签到,获得积分10
28秒前
开心绫完成签到,获得积分10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789363
求助须知:如何正确求助?哪些是违规求助? 3334368
关于积分的说明 10269614
捐赠科研通 3050834
什么是DOI,文献DOI怎么找? 1674175
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693