可加工性
振动
机械加工
有限元法
材料科学
刀具
切削液
机械工程
结构工程
声学
冶金
工程类
物理
作者
Luis Carlos Flórez-García,Hernan Alberto González Rojas,Antonio J. Sánchez Egea
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2020-01-24
卷期号:13 (3): 567-567
被引量:12
摘要
The objective of this work is to analyze the influence of the vibration-assisted turning process on the machinability of S235 carbon steel. During the experiments using this vibrational machining process, the vibrational amplitude and frequency of the cutting tool were adjusted to drive the tool tip in an elliptical or linear motion in the feed direction. Furthermore, a finite element analysis was deployed to investigate the mechanical response for different vibration-assisted cutting conditions. The results show how the specific cutting energy and the material’s machinability behave when using different operational cutting parameters, such as vibration frequency and tool tip motion in the x-axis, y-axis, and elliptical (x-y plane) motion. Then, the specific cutting energy and material’s machinability are compared with a conventional turning process, which helps to validate the finite element method (FEM) for the vibration-assisted process. As a result of the operating parameters used, the vibration-assisted machining process leads to a machinability improvement of up to 18% in S235 carbon steel. In particular, higher vibration frequencies were shown to increase the material’s machinability due to the specific cutting energy decrease. Therefore, the finite element method can be used to predict the vibration-assisted cutting and the specific cutting energy, based on predefined cutting parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI