Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae

酪醇 红景天苷 酿酒酵母 新陈代谢 代谢工程 化学 发酵 生物化学 磷酸戊糖途径 酵母 酚类 糖酵解 色谱法
作者
Wei Guo,Qiulan Huang,Yuhui Feng,Taicong Tan,Suhao Niu,Shaoli Hou,Zhigang Chen,Zhiqiang Du,Yu Shen,Xu Fang
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:117 (8): 2410-2419 被引量:51
标识
DOI:10.1002/bit.27370
摘要

Metabolic engineering of Saccharomyces cerevisiae for high-level production of aromatic chemicals has received increasing attention in recent years. Tyrosol production from glucose by S. cerevisiae is considered an environmentally sustainable and safe approach. However, the production of tyrosol and salidroside by engineered S. cerevisiae has been reported to be lower than 2 g/L to date. In this study, S. cerevisiae was engineered with a push-pull-restrain strategy to efficiently produce tyrosol and salidroside from glucose. The biosynthetic pathways of ethanol, phenylalanine, and tryptophan were restrained by disrupting PDC1, PHA2, and TRP3. Subsequently, tyrosol biosynthesis was enhanced with a metabolic pull strategy of introducing PcAAS and EcTyrAM53I/A354V . Moreover, a metabolic push strategy was implemented with the heterologous expression of phosphoketolase (Xfpk), and then erythrose 4-phosphate was synthesized simultaneously by two pathways, the Xfpk-based pathway and the pentose phosphate pathway, in S. cerevisiae. Furthermore, the heterologous expression of Xfpk alone in S. cerevisiae efficiently improved tyrosol production compared with the coexpression of Xfpk and phosphotransacetylase. Finally, the tyrosol yield increased by approximately 135-folds, compared with that of parent strain. The total amount of tyrosol and salidroside with glucose fed-batch fermentation was over 10 g/L and reached levels suitable for large-scale production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助111采纳,获得10
刚刚
花鸟风月evereo完成签到,获得积分10
刚刚
ZHANG完成签到,获得积分10
刚刚
1秒前
高兴曼寒完成签到,获得积分10
1秒前
小张发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
4秒前
Mm完成签到,获得积分10
4秒前
Lucas应助可可采纳,获得30
5秒前
科研通AI2S应助高高菠萝采纳,获得10
5秒前
6秒前
Accepted发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助queen采纳,获得10
7秒前
7秒前
哟252完成签到,获得积分10
8秒前
8秒前
8秒前
11秒前
keke发布了新的文献求助10
11秒前
一心难求发布了新的文献求助10
12秒前
英俊的铭应助ttttttttt采纳,获得10
12秒前
13秒前
13秒前
李庆完成签到,获得积分10
14秒前
15秒前
巴斯光年发布了新的文献求助10
16秒前
科目三应助杰仔采纳,获得20
16秒前
cc发布了新的文献求助10
17秒前
gy79210发布了新的文献求助10
17秒前
稳重的宛丝完成签到 ,获得积分10
18秒前
科目三应助复杂的鸿采纳,获得10
18秒前
queen完成签到,获得积分20
18秒前
long发布了新的文献求助30
18秒前
解语花发布了新的文献求助10
19秒前
zzzwww发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277925
求助须知:如何正确求助?哪些是违规求助? 3806447
关于积分的说明 11926310
捐赠科研通 3453318
什么是DOI,文献DOI怎么找? 1893962
邀请新用户注册赠送积分活动 943829
科研通“疑难数据库(出版商)”最低求助积分说明 847673