亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Granger causality-based information fusion applied to electrical measurements from power transformers

计算机科学 格兰杰因果关系 因果关系(物理学) 自动化 数据挖掘 变压器 背景(考古学) 人工智能 机器学习 电压 电气工程 工程类 物理 生物 古生物学 机械工程 量子力学
作者
J. Rodríguez-Rivero,Javier Ramı́rez,Francisco J. Martinez‐Murcia,F. Segovia,Andrés Ortíz,D. Salas-González,Diego Castillo-Barnés,I. Álvarez,Carlos G. Puntonet,C. Jiménez-Mesa,F.J. Leiva,Serge Carillo,John Suckling,J. M. Górriz
出处
期刊:Information Fusion [Elsevier BV]
卷期号:57: 59-70 被引量:11
标识
DOI:10.1016/j.inffus.2019.12.005
摘要

In the immediate future, with the increasing presence of electrical vehicles and the large increase in the use of renewable energies, it will be crucial that distribution power networks are managed, supervised and exploited in a similar way as the transmission power systems were in previous decades. To achieve this, the underlying infrastructure requires automated monitoring and digitization, including smart-meters, wide-band communication systems, electronic device based-local controllers, and the Internet of Things. All of these technologies demand a huge amount of data to be curated, processed, interpreted and fused with the aim of real-time predictive control and supervision of medium/low voltage transformer substations. Wiener–Granger causality, a statistical notion of causal inference based on Information Fusion could help in the prediction of electrical behaviour arising from common causal dependencies. Originally developed in econometrics, it has successfully been applied to several fields of research such as the neurosciences and is applicable to time series data whereby cause precedes effect. In this paper, we demonstrate the potential of this methodology in the context of power measures for providing theoretical models of low/medium power transformers. Up to our knowledge, the proposed method in this context is the first attempt to build a data-driven power system model based on G-causality. In particular, we analysed directed functional connectivity of electrical measures providing a statistical description of observed responses, and identified the causal structure within data in an exploratory analysis. Pair-wise conditional G-causality of power transformers, their independent evolution in time, and the joint evolution in time and frequency are discussed and analysed in the experimental section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
洲洲发布了新的文献求助10
7秒前
星星发布了新的文献求助10
9秒前
10秒前
自律发布了新的文献求助10
17秒前
XIAJIN完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助150
39秒前
electricelectric完成签到,获得积分10
42秒前
星星发布了新的文献求助10
1分钟前
自律完成签到,获得积分10
1分钟前
Lexi完成签到 ,获得积分10
1分钟前
星星发布了新的文献求助10
1分钟前
2分钟前
神勇绮琴发布了新的文献求助10
2分钟前
2分钟前
2分钟前
田様应助洲洲采纳,获得10
2分钟前
2分钟前
zzzzz完成签到 ,获得积分10
2分钟前
黄桃发布了新的文献求助10
2分钟前
胡萝卜完成签到,获得积分10
2分钟前
科研通AI5应助洁净的千凡采纳,获得30
2分钟前
3分钟前
3分钟前
科研通AI5应助ycliang采纳,获得10
3分钟前
nessa完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
4分钟前
清秀的小刺猬应助弦歌采纳,获得10
4分钟前
4分钟前
4分钟前
脑洞疼应助WHDD采纳,获得10
4分钟前
洲洲完成签到 ,获得积分10
4分钟前
深情安青应助长情胡萝卜采纳,获得10
5分钟前
洁净的千凡完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137486
求助须知:如何正确求助?哪些是违规求助? 4337281
关于积分的说明 13511327
捐赠科研通 4175861
什么是DOI,文献DOI怎么找? 2289760
邀请新用户注册赠送积分活动 1290277
关于科研通互助平台的介绍 1232004