Reconstructing organisms in silico: genome-scale models and their emerging applications

基因组 生物 计算生物学 生物信息学 蛋白质组 计算模型 选择(遗传算法) 遗传学 基因 计算机科学 人工智能
作者
Xin Fang,Colton J. Lloyd,Bernhard Ø. Palsson
出处
期刊:Nature Reviews Microbiology [Nature Portfolio]
卷期号:18 (12): 731-743 被引量:231
标识
DOI:10.1038/s41579-020-00440-4
摘要

Escherichia coli is considered to be the best-known microorganism given the large number of published studies detailing its genes, its genome and the biochemical functions of its molecular components. This vast literature has been systematically assembled into a reconstruction of the biochemical reaction networks that underlie E. coli’s functions, a process which is now being applied to an increasing number of microorganisms. Genome-scale reconstructed networks are organized and systematized knowledge bases that have multiple uses, including conversion into computational models that interpret and predict phenotypic states and the consequences of environmental and genetic perturbations. These genome-scale models (GEMs) now enable us to develop pan-genome analyses that provide mechanistic insights, detail the selection pressures on proteome allocation and address stress phenotypes. In this Review, we first discuss the overall development of GEMs and their applications. Next, we review the evolution of the most complete GEM that has been developed to date: the E. coli GEM. Finally, we explore three emerging areas in genome-scale modelling of microbial phenotypes: collections of strain-specific models, metabolic and macromolecular expression models, and simulation of stress responses. Genome-scale models (GEMs) are mathematical representations of reconstructed networks that facilitate computation and prediction of phenotypes, and are useful tools for predicting the biological capabilities of microorganisms. In this Review, Fang, Lloyd and Palsson discuss the development and the emerging application of GEMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助明亮依琴采纳,获得10
1秒前
1秒前
xiaobai发布了新的文献求助30
2秒前
2秒前
2秒前
斯文败类应助最棒哒采纳,获得10
3秒前
云云完成签到,获得积分10
3秒前
祝雲完成签到 ,获得积分10
3秒前
Orange应助洋洋羊采纳,获得30
3秒前
动听雁山完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
大曼发布了新的文献求助10
5秒前
7秒前
领导范儿应助清秀的语堂采纳,获得10
7秒前
火星上的以蓝完成签到,获得积分10
8秒前
8秒前
8秒前
传奇3应助zll采纳,获得10
9秒前
9秒前
薛定谔的猫完成签到,获得积分10
9秒前
赘婿应助清脆火龙果采纳,获得10
9秒前
重要语薇发布了新的文献求助10
9秒前
wangruiyang完成签到 ,获得积分10
9秒前
10秒前
xiaobai完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
默认用户名完成签到,获得积分10
10秒前
11秒前
456221发布了新的文献求助10
11秒前
12秒前
AQ完成签到,获得积分20
13秒前
吴炫完成签到,获得积分10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796265
求助须知:如何正确求助?哪些是违规求助? 3341187
关于积分的说明 10304904
捐赠科研通 3057784
什么是DOI,文献DOI怎么找? 1677868
邀请新用户注册赠送积分活动 805698
科研通“疑难数据库(出版商)”最低求助积分说明 762740