Automated Categorization of Parkinsonian Syndromes Using Magnetic Resonance Imaging in a Clinical Setting

进行性核上麻痹 接收机工作特性 磁共振成像 帕金森病 队列 医学 帕金森病 心理学 萎缩 人工智能 病理 放射科 计算机科学 疾病 内科学
作者
Lydia Chougar,Johann Faouzi,Nadya Pyatigorskaya,Lydia Yahia-Chérif,Rahul Gaurav,Emma Biondetti,Marie Villotte,Romain Valabrègue,Jean‐Christophe Corvol,Alexis Brice,Louise‐Laure Mariani,Florence Cormier,Marie Vidailhet,Gwendoline Dupont,Ines Piot,David Grabli,Christine Payan,Olivier Colliot,Bertrand Degos,Stéphane Lehéricy
出处
期刊:Movement Disorders [Wiley]
卷期号:36 (2): 460-470 被引量:41
标识
DOI:10.1002/mds.28348
摘要

ABSTRACT Background Machine learning algorithms using magnetic resonance imaging (MRI) data can accurately discriminate parkinsonian syndromes. Validation in patients recruited in routine clinical practice is missing. Objective The aim of this study was to assess the accuracy of a machine learning algorithm trained on a research cohort and tested on an independent clinical replication cohort for the categorization of parkinsonian syndromes. Methods Three hundred twenty‐two subjects, including 94 healthy control subjects, 119 patients with Parkinson's disease (PD), 51 patients with progressive supranuclear palsy (PSP) with Richardson's syndrome, 35 with multiple system atrophy (MSA) of the parkinsonian variant (MSA‐P), and 23 with MSA of the cerebellar variant (MSA‐C), were recruited. They were divided into a training cohort (n = 179) scanned in a research environment and a replication cohort (n = 143) examined in clinical practice on different MRI systems. Volumes and diffusion tensor imaging (DTI) metrics in 13 brain regions were used as input for a supervised machine learning algorithm. To harmonize data across scanners and reduce scanner‐dependent effects, we tested two types of normalizations using patient data or healthy control data. Results In the replication cohort, high accuracies were achieved using volumetry in the classification of PD–PSP, PD–MSA‐C, PSP–MSA‐C, and PD‐atypical parkinsonism (balanced accuracies: 0.840–0.983, area under the receiver operating characteristic curves: 0.907–0.995). Performances were lower for the classification of PD–MSA‐P, MSA‐C–MSA‐P (balanced accuracies: 0.765–0.784, area under the receiver operating characteristic curve: 0.839–0.871) and PD–PSP–MSA (balanced accuracies: 0.773). Performance using DTI was improved when normalizing by controls, but remained lower than that using volumetry alone or combined with DTI. Conclusions A machine learning approach based on volumetry enabled accurate classification of subjects with early‐stage parkinsonism, examined on different MRI systems, as part of their clinical assessment. © 2020 International Parkinson and Movement Disorder Society
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yezilin完成签到,获得积分10
3秒前
xhnmdl发布了新的文献求助10
3秒前
11发布了新的文献求助10
3秒前
ccc完成签到,获得积分10
4秒前
在水一方应助曾伟采纳,获得10
4秒前
哈哈哈完成签到,获得积分10
5秒前
5秒前
Owen应助veblem采纳,获得10
5秒前
iu两个废物i俄国完成签到 ,获得积分10
5秒前
5秒前
cc完成签到,获得积分10
6秒前
showmaker发布了新的文献求助10
8秒前
8秒前
留胡子的小虾米完成签到,获得积分10
10秒前
Jasper应助cc采纳,获得10
11秒前
11秒前
12秒前
荔枝完成签到,获得积分10
12秒前
12秒前
13秒前
善学以致用应助showmaker采纳,获得10
13秒前
fcc关闭了fcc文献求助
13秒前
端庄煎饼发布了新的文献求助10
14秒前
吭哧吭哧完成签到,获得积分10
14秒前
14秒前
希望天下0贩的0应助大白采纳,获得10
15秒前
veblem发布了新的文献求助10
16秒前
17秒前
17秒前
Jason发布了新的文献求助10
18秒前
18秒前
18秒前
迷人的如冰完成签到,获得积分10
18秒前
18秒前
杜晓雯发布了新的文献求助10
19秒前
科目三应助xhnmdl采纳,获得10
20秒前
20秒前
20秒前
威武无施发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3944957
求助须知:如何正确求助?哪些是违规求助? 3489986
关于积分的说明 11054358
捐赠科研通 3220957
什么是DOI,文献DOI怎么找? 1780355
邀请新用户注册赠送积分活动 865314
科研通“疑难数据库(出版商)”最低求助积分说明 799837