多元方法论
随机对照试验
定性性质
结果(博弈论)
研究设计
定性研究
变量(数学)
干预(咨询)
计算机科学
心理学
管理科学
医学
统计
护理部
社会学
数学
机器学习
工程类
外科
数理经济学
数学分析
社会科学
教育学
作者
Lauren Jodi Van Scoy,Michael J. Green,John W. Creswell,Elizabeth Thiede,Debra L. Wiegand,In Seo La,Daniella Lipnick,Rhonda L. Johnson,A.E.F. Dimmock,Andrew Foy,Erik Lehman,Vernon M. Chinchilli,Benjamin H. Levi
标识
DOI:10.1177/1558689820970686
摘要
The use of mixed methods research in intervention trials mostly centers around using quantitative data to assess primary outcomes and qualitative data primarily for exploratory purposes, to supplement, and/or explain quantitative findings. We describe a novel mixed methods procedure that generates an integrated outcome variable used to reexamine unexpected findings that resulted from an advance care planning interventional randomized controlled trial. The integrated outcome variable helped explain apparent anomalies in study data that resulted from analyzing quantitative or qualitative data independently. The methodology outlined in this article provides a useful mixed methodological contribution by illustrating steps that may be taken by researchers seeking a more meaningful way to integrate qualitative and quantitative data to form intervention variables in trials.
科研通智能强力驱动
Strongly Powered by AbleSci AI