Twist Angle-Dependent Interlayer Exciton Lifetimes in van der Waals Heterostructures

激子 范德瓦尔斯力 激发态 单层 凝聚态物理 扭转 材料科学 异质结 纳米棒 物理 分子物理学 原子物理学 纳米技术 量子力学 数学 分子 几何学
作者
Junho Choi,Matthias Florian,Alexander Steinhoff,Daniel Erben,Kha Tran,Dong Seob Kim,Liuyang Sun,Jiamin Quan,Robert Claassen,Somak Majumder,Jennifer A. Hollingsworth,Takashi Taniguchi,Kenji Watanabe,K. Ueno,Akshay Singh,Galan Moody,F. Jahnke,Xiaoqin Li
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:126 (4) 被引量:93
标识
DOI:10.1103/physrevlett.126.047401
摘要

In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in MoSe2/WSe2 twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1° to 3.5°. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moiré potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of “twistronics”.Received 8 May 2020Revised 13 November 2020Accepted 4 December 2020DOI:https://doi.org/10.1103/PhysRevLett.126.047401© 2021 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasExcitonsPhysical SystemsQuantum wellsSemiconductor compoundsTransition-metal dichalcogenideTechniquesPhotoluminescenceCondensed Matter & Materials Physics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
番薯叶完成签到,获得积分10
刚刚
1秒前
羊羊完成签到 ,获得积分10
1秒前
3秒前
VDC应助番薯叶采纳,获得20
4秒前
7秒前
wanci应助天空采纳,获得10
7秒前
djbj2022发布了新的文献求助10
8秒前
wanci应助现代凝安采纳,获得10
8秒前
季乔完成签到,获得积分10
10秒前
13秒前
13秒前
海鸥完成签到,获得积分10
14秒前
都是发布了新的文献求助10
17秒前
知性的土豆完成签到,获得积分10
21秒前
汉桑波欸完成签到,获得积分10
21秒前
脑洞疼应助都是采纳,获得10
22秒前
平淡的芯阳完成签到 ,获得积分10
22秒前
24秒前
肉丸完成签到 ,获得积分10
26秒前
hyf567完成签到,获得积分10
28秒前
桐桐完成签到,获得积分0
28秒前
动漫大师发布了新的文献求助10
29秒前
李健的粉丝团团长应助CATH采纳,获得10
30秒前
Rye227应助科研通管家采纳,获得10
35秒前
李健应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
36秒前
Ava应助应应采纳,获得10
42秒前
43秒前
44秒前
CATH发布了新的文献求助10
47秒前
科研通AI5应助neurospine采纳,获得10
47秒前
58秒前
tmr完成签到,获得积分10
58秒前
1分钟前
可爱的函函应助keke采纳,获得10
1分钟前
丰富的小甜瓜完成签到,获得积分10
1分钟前
guoguo完成签到,获得积分10
1分钟前
Chnious发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783189
求助须知:如何正确求助?哪些是违规求助? 3328536
关于积分的说明 10236946
捐赠科研通 3043651
什么是DOI,文献DOI怎么找? 1670622
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126