Sen1Floods11: a georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1

大洪水 地表水 遥感 计算机科学 环境科学 人工智能 机器学习 地质学 地理 环境工程 考古
作者
Derrick Bonafilia,Beth Tellman,Tyler Anderson,Erica Issenberg
标识
DOI:10.1109/cvprw50498.2020.00113
摘要

Accurate flood mapping at global scale can support disaster relief and recovery efforts. Improving flood relief efforts with more accurate data is of great importance due to expected increases in the frequency and magnitude of flood events due to climate change. To assist efforts to operationalize deep learning algorithms for flood mapping at global scale, we introduce Sen1Floods11, a surface water data set including raw Sentinel-1 imagery and classified permanent water and flood water. This dataset consists of 4,831 512x512 chips covering 120,406 km 2 and spans all 14 biomes, 357 ecoregions, and 6 continents of the world across 11 flood events. We used Sen1Floods11 to train, validate, and test fully convolutional neural networks (FCNNs) to segment permanent and flood water. We compare results of classifying permanent, flood, and total surface water from training a FCNN model on four subsets of this data: i) 446 hand labeled chips of surface water from flood events; ii) 814 chips of publicly available permanent water data labels from Landsat (JRC surface water dataset); iii) 4,385 chips of surface water classified from Sentinel-2 images from flood events and iv) 4,385 chips of surface water classified from Sentinel-1 imagery from flood events. We compare these four models to a common remote sensing approach of thresholding radar backscatter to identify surface water. Results show the FCNN model trained on classifications of Sentinel-2 flood events performs best to identify flood and total surface water, while backscatter thresholding yielded the best result to identify permanent water classes only. Our results suggest deep learning models for flood detection of radar data can outperform threshold based remote sensing algorithms, and perform better with training labels that include flood water specifically, not just permanent surface water. We also find that FCNN models trained on plentiful automatically generated labels from optical remote sensing algorithms perform better than models trained on scarce hand labeled data. Future research to operationalize computer vision approaches to mapping flood and surface water could build new models from Sen1Floods11 and expand this dataset to include additional sensors and flood events. We provide Sen1Floods11, as well as our training and evaluation code at: https://github.com/cloudtostreet/Sen1Floods11.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助东方耀采纳,获得10
刚刚
meng完成签到,获得积分10
1秒前
1秒前
dfghjkl完成签到 ,获得积分10
3秒前
爱听歌依波完成签到 ,获得积分10
3秒前
bkagyin应助天色青青采纳,获得10
3秒前
深情安青应助杨冰采纳,获得10
3秒前
老徐完成签到,获得积分10
4秒前
gsji完成签到,获得积分10
4秒前
linkr5发布了新的文献求助10
5秒前
5秒前
时舒完成签到 ,获得积分10
6秒前
乐正亦寒完成签到 ,获得积分10
6秒前
传奇3应助暖暖采纳,获得10
7秒前
风吹草动玉米粒完成签到,获得积分10
7秒前
nieinei完成签到 ,获得积分10
7秒前
7秒前
xdd完成签到,获得积分10
8秒前
一棵草完成签到,获得积分10
8秒前
Srui完成签到,获得积分10
8秒前
9秒前
沉静野狼完成签到,获得积分10
9秒前
小二郎应助淡定白枫采纳,获得10
9秒前
10秒前
芝芝完成签到,获得积分10
10秒前
ZQJ完成签到,获得积分10
10秒前
bettersy完成签到,获得积分10
10秒前
10秒前
lanlan完成签到,获得积分10
11秒前
浅沫juanjuan完成签到,获得积分10
11秒前
11秒前
落雨声完成签到,获得积分10
11秒前
11秒前
念芹完成签到,获得积分10
11秒前
飞鸟完成签到 ,获得积分10
12秒前
w_tiger完成签到 ,获得积分10
12秒前
迷路冰颜完成签到 ,获得积分10
12秒前
zhou完成签到,获得积分10
12秒前
11完成签到,获得积分20
12秒前
ZQJ发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609