亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sen1Floods11: a georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1

大洪水 地表水 遥感 计算机科学 环境科学 人工智能 机器学习 地质学 地理 环境工程 考古
作者
Derrick Bonafilia,Beth Tellman,Tyler Anderson,Erica Issenberg
标识
DOI:10.1109/cvprw50498.2020.00113
摘要

Accurate flood mapping at global scale can support disaster relief and recovery efforts. Improving flood relief efforts with more accurate data is of great importance due to expected increases in the frequency and magnitude of flood events due to climate change. To assist efforts to operationalize deep learning algorithms for flood mapping at global scale, we introduce Sen1Floods11, a surface water data set including raw Sentinel-1 imagery and classified permanent water and flood water. This dataset consists of 4,831 512x512 chips covering 120,406 km 2 and spans all 14 biomes, 357 ecoregions, and 6 continents of the world across 11 flood events. We used Sen1Floods11 to train, validate, and test fully convolutional neural networks (FCNNs) to segment permanent and flood water. We compare results of classifying permanent, flood, and total surface water from training a FCNN model on four subsets of this data: i) 446 hand labeled chips of surface water from flood events; ii) 814 chips of publicly available permanent water data labels from Landsat (JRC surface water dataset); iii) 4,385 chips of surface water classified from Sentinel-2 images from flood events and iv) 4,385 chips of surface water classified from Sentinel-1 imagery from flood events. We compare these four models to a common remote sensing approach of thresholding radar backscatter to identify surface water. Results show the FCNN model trained on classifications of Sentinel-2 flood events performs best to identify flood and total surface water, while backscatter thresholding yielded the best result to identify permanent water classes only. Our results suggest deep learning models for flood detection of radar data can outperform threshold based remote sensing algorithms, and perform better with training labels that include flood water specifically, not just permanent surface water. We also find that FCNN models trained on plentiful automatically generated labels from optical remote sensing algorithms perform better than models trained on scarce hand labeled data. Future research to operationalize computer vision approaches to mapping flood and surface water could build new models from Sen1Floods11 and expand this dataset to include additional sensors and flood events. We provide Sen1Floods11, as well as our training and evaluation code at: https://github.com/cloudtostreet/Sen1Floods11.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fsznc完成签到 ,获得积分0
20秒前
科研通AI6应助科研通管家采纳,获得30
23秒前
50秒前
54秒前
CodeCraft应助bobo采纳,获得10
1分钟前
1分钟前
Hello应助尼克狐尼克采纳,获得10
1分钟前
白嫖论文完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
2分钟前
Virtual应助frl采纳,获得10
2分钟前
3分钟前
3分钟前
fufufu123完成签到 ,获得积分10
3分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
李爱国应助Xuancheng_SINH采纳,获得10
4分钟前
4分钟前
4分钟前
digger2023完成签到 ,获得积分10
4分钟前
Nichols完成签到,获得积分10
4分钟前
Una完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
渔夫发布了新的文献求助10
5分钟前
5分钟前
6分钟前
yindi1991完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
不得不爱发布了新的文献求助10
7分钟前
7分钟前
8分钟前
kuoping完成签到,获得积分0
8分钟前
火星上以柳完成签到,获得积分10
8分钟前
9分钟前
四斤瓜完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4377117
求助须知:如何正确求助?哪些是违规求助? 3872846
关于积分的说明 12068198
捐赠科研通 3515924
什么是DOI,文献DOI怎么找? 1929388
邀请新用户注册赠送积分活动 970997
科研通“疑难数据库(出版商)”最低求助积分说明 869671