亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Faster Deliveries and Smarter Order Assignments for an On-Demand Meal Delivery Platform

订单(交换) 餐食 计算机科学 业务 医学 财务 内科学
作者
Wenzheng Mao,Liu Ming,Ying Rong,Christopher S. Tang,Huan Zheng
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:46
标识
DOI:10.2139/ssrn.3469015
摘要

Academic/Practical Relevance: Our intent is to identify the underlying factors and develop an order assignment policy that can help an on-demand meal delivery service platform to grow.Methodology: By analyzing transactional data obtained from an online meal delivery platform in Hangzhou (China) over a two-month period in 2015, we examine the impact of meal delivery performance on a customer's future orders. Through a simulation study, we illustrate the importance of incorporating our empirical results into the development of a smarter "order assignment policy". Results: We find empirical evidence that an "early delivery'' is positively correlated with customer retention: a 10-minute earlier delivery is associated with an increase of one order per month from each customer. However, we find that the negative effect on future orders associated with "late deliveries'' is much stronger than the positive effect associated with "early deliveries". Moreover, we show empirically that a driver's individual local area knowledge and prior delivery experience can reduce late deliveries significantly. Finally, through a simulation study, we illustrate how one can incorporate our empirical results in the development of an order assignment policy that can help a platform to grow its business through customer retention. Managerial Implications: Our empirical results and our simulation study suggest that to increase future customer orders, an on-demand service platform should address the issues arising from both the supply side (i.e., driver's local area knowledge and delivery experience) and the demand side (i.e., asymmetric impacts of early and late deliveries on future customer orders) into their operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
小杨发布了新的文献求助10
25秒前
26秒前
MiaMia完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
辉辉应助科研通管家采纳,获得10
1分钟前
小杨完成签到,获得积分20
1分钟前
整齐的不评完成签到,获得积分10
1分钟前
努力的淼淼完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助杨涵月采纳,获得10
2分钟前
深情安青应助外向的妍采纳,获得10
2分钟前
jyy发布了新的文献求助10
2分钟前
2分钟前
外向的妍发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
杨涵月发布了新的文献求助10
3分钟前
3分钟前
3分钟前
momo发布了新的文献求助10
3分钟前
司徒恋风发布了新的文献求助10
3分钟前
杨涵月完成签到,获得积分20
4分钟前
SciGPT应助温婉的凝雁采纳,获得10
4分钟前
GaCf完成签到 ,获得积分20
4分钟前
高挑的白旋风完成签到,获得积分10
4分钟前
momo完成签到,获得积分10
4分钟前
4分钟前
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
沉静语蓉完成签到,获得积分20
5分钟前
194711发布了新的文献求助10
5分钟前
CJH104完成签到 ,获得积分10
6分钟前
h0jian09完成签到,获得积分10
6分钟前
9527完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913716
捐赠科研通 4749427
什么是DOI,文献DOI怎么找? 2549289
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091