Emergent Constraints on Climate-Carbon Cycle Feedbacks

地球系统科学 气候变化 环境科学 约束(计算机辅助设计) 气候学 碳循环 温室气体 气候模式 航程(航空) 气候系统 计算机科学 环境资源管理 生态学 数学 生态系统 材料科学 几何学 复合材料 生物 地质学
作者
Peter M. Cox
出处
期刊:Current climate change reports [Springer Nature]
卷期号:5 (4): 275-281 被引量:40
标识
DOI:10.1007/s40641-019-00141-y
摘要

Abstract Purpose of Review Feedbacks between CO 2 -induced climate change and the carbon cycle are now routinely represented in the Earth System Models (ESMs) that are used to make projections of future climate change. The inconclusion of climate-carbon cycle feedbacks in climate projections is an important advance, but has added a significant new source of uncertainty. This review assesses the potential for emergent constraints to reduce the uncertainties associated with climate-carbon cycle feedbacks. Recent Findings The emergent constraint technique involves using the full ensemble of models to find an across-ensemble relationship between an observable feature of the Earth System (such as a trend, interannual variation or change in seasonality) and an uncertain aspect of the future. Examples focussing on reducing uncertainties in future atmospheric CO 2 concentration, carbon loss from tropical land under warming and CO 2 fertilization of mid- and high-latitude photosynthesis are exemplars of these different types of emergent constraints. Summary The power of emergent constraints is that they use the enduring range in model projections to reduce uncertainty in the future of the real Earth System, but there are also risks that indiscriminate data-mining, and systematic model errors could yield misleading constraints. A hypothesis-driven theory-led approach can overcome these risks and also reveal the true promise of emergent constraints—not just as ways to reduce uncertainty in future climate change but also to catalyse advances in our understanding of the Earth System.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助京墨襦采纳,获得10
刚刚
xiaoyeken完成签到,获得积分10
1秒前
cly发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
colormeblue完成签到 ,获得积分10
4秒前
4秒前
研友_VZG7GZ应助Halari采纳,获得10
4秒前
chenzq完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
飘逸飞柏发布了新的文献求助10
5秒前
6秒前
华仔应助猪猪猪采纳,获得10
6秒前
LukaMagic完成签到,获得积分10
7秒前
bkagyin应助TJJJJJ采纳,获得10
7秒前
Su发布了新的文献求助10
8秒前
8秒前
知了完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
zzzZxp完成签到 ,获得积分10
12秒前
fishfun完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
共享精神应助chenzq采纳,获得10
13秒前
13秒前
14秒前
yu发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
Ran完成签到,获得积分10
16秒前
Daileo发布了新的文献求助10
16秒前
牛牛发布了新的文献求助10
17秒前
18秒前
猪猪猪发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5669406
求助须知:如何正确求助?哪些是违规求助? 4895943
关于积分的说明 15127358
捐赠科研通 4828173
什么是DOI,文献DOI怎么找? 2585268
邀请新用户注册赠送积分活动 1538894
关于科研通互助平台的介绍 1497201