Deep Learning Architecture for Short-Term Passenger Flow Forecasting in Urban Rail Transit

计算机科学 深度学习 稳健性(进化) 图形 建筑 人工智能 城市轨道交通 流入 网络体系结构 数据挖掘 工程类 运输工程 计算机网络 理论计算机科学 视觉艺术 机械 基因 物理 化学 艺术 生物化学
作者
Jinlei Zhang,Chen Feng,Zhiyong Cui,Yinan Guo,Yadi Zhu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 7004-7014 被引量:171
标识
DOI:10.1109/tits.2020.3000761
摘要

Short-term passenger flow forecasting is an essential component in urban rail transit operation. Emerging deep learning models provide good insight into improving prediction precision. Therefore, we propose a deep learning architecture combining the residual network (ResNet), graph convolutional network (GCN), and long short-term memory (LSTM) (called "ResLSTM") to forecast short-term passenger flow in urban rail transit on a network scale. First, improved methodologies of the ResNet, GCN, and attention LSTM models are presented. Then, the model architecture is proposed, wherein ResNet is used to capture deep abstract spatial correlations between subway stations, GCN is applied to extract network topology information, and attention LSTM is used to extract temporal correlations. The model architecture includes four branches for inflow, outflow, graph-network topology, as well as weather conditions and air quality. To the best of our knowledge, this is the first time that air-quality indicators have been taken into account, and their influences on prediction precision quantified. Finally, ResLSTM is applied to the Beijing subway using three time granularities (10, 15, and 30 min) to conduct short-term passenger flow forecasting. A comparison of the prediction performance of ResLSTM with those of many state-of-the-art models illustrates the advantages and robustness of ResLSTM. Moreover, a comparison of the prediction precisions obtained for time granularities of 10, 15, and 30 min indicates that prediction precision increases with increasing time granularity. This study can provide subway operators with insight into short-term passenger flow forecasting by leveraging deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gglp完成签到 ,获得积分10
刚刚
小二郎应助宇宇采纳,获得10
1秒前
所所应助ha采纳,获得10
1秒前
科目三应助行7采纳,获得10
2秒前
帅帅发布了新的文献求助10
2秒前
2秒前
苻莞发布了新的文献求助10
3秒前
书祝发布了新的文献求助10
3秒前
3秒前
3秒前
小西完成签到,获得积分10
4秒前
英俊的铭应助liuyu0209采纳,获得10
4秒前
randi完成签到 ,获得积分10
4秒前
5秒前
善学以致用应助濮阳半蕾采纳,获得10
7秒前
不渝发布了新的文献求助10
7秒前
一切顺遂应助zh采纳,获得10
7秒前
7秒前
帅气的樱桃完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
小铃铛完成签到,获得积分10
10秒前
tu123完成签到,获得积分10
10秒前
10秒前
1234567完成签到,获得积分10
11秒前
12秒前
赵康健完成签到,获得积分20
12秒前
zhang完成签到,获得积分10
12秒前
烈日骄阳发布了新的文献求助10
12秒前
啊哈完成签到 ,获得积分10
12秒前
LEMONS完成签到,获得积分10
13秒前
13秒前
13秒前
oak完成签到,获得积分10
13秒前
烂漫薯片发布了新的文献求助10
13秒前
HH发布了新的文献求助10
14秒前
14秒前
Phoo发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938440
求助须知:如何正确求助?哪些是违规求助? 3484130
关于积分的说明 11027202
捐赠科研通 3214064
什么是DOI,文献DOI怎么找? 1776393
邀请新用户注册赠送积分活动 862624
科研通“疑难数据库(出版商)”最低求助积分说明 798527