磁化
3D打印
材料科学
制作
转化(遗传学)
软机器人
纳米技术
计算机科学
执行机构
机械工程
磁场
人工智能
工程类
物理
复合材料
病理
基因
化学
医学
替代医学
量子力学
生物化学
作者
Yuanxi Zhang,Qingyuan Wang,Shengzhu Yi,Zi Lin,Chuanyang Wang,Zhipeng Chen,Lelun Jiang
标识
DOI:10.1021/acsami.0c19280
摘要
Four-dimensional (4D) printed magnetoactive soft material (MASM) with a three-dimensional (3D) patterned magnetization profile possesses programmable shape transformation and controllable locomotion ability, showing promising applications in actuators and soft robotics. However, typical 4D printing strategies for MASM always introduced a printing magnetic field to orient the magneto-sensitive particles in polymers. Such strategies not only increase the cooperative control complexity of a 3D printer but may also induce local agglomeration of magneto-sensitive particles, which disturbs the magnetization of the already-printed structure. Herein, we proposed a novel 4D printing strategy that coupled the traditional 3D injection printing with the origami-based magnetization technique for easy fabrication of MASM objects with a 3D patterned magnetization profile. The 3D injection printing that can rapidly create complex 3D structures and the origami-based magnetization technique that can generate the spatial magnetization profile are combined for fabrication of 3D MASM objects to yield programmable transformation and controllable locomotion. A physics-based finite element model was also developed for the design guidance of origami-based magnetization and magnetic actuation transformation of MASM. We further demonstrated the diverse functions derived from the complex shape deformation of MASM-based robots, including a bionic human hand that played "rock-paper-scissors" game, a bionic butterfly that swung the wings on the flower, and a bionic turtle that crawled on the land and swam in the water.
科研通智能强力驱动
Strongly Powered by AbleSci AI