材料科学
离子电导率
电解质
导电体
超分子化学
锂(药物)
离子键合
纳米技术
电极
电导率
化学物理
离子
解耦(概率)
复合材料
结晶学
晶体结构
化学
生物
控制工程
物理化学
有机化学
工程类
内分泌学
作者
David G. Mackanic,Xuzhou Yan,Qiuhong Zhang,Naoji Matsuhisa,Zhiao Yu,Yuanwen Jiang,Tuheen Manika,Jeffrey Lopez,Hongping Yan,Kai Liu,Xiaodong Chen,Yi Cui,Zhenan Bao
标识
DOI:10.1038/s41467-019-13362-4
摘要
The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m-3) and high ionic conductivity (1.2 × 10-4 S cm-1 at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm-2 that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI