New Procedures to Improve Tap Density of Li-Rich Layered Cathode Materials for Li-Ion Batteries

自来水 阴极 压实 螯合作用 草酸盐 多孔性 材料科学 金属氢氧化物 氢氧化物 化学工程 纳米技术 化学 分析化学(期刊) 无机化学 复合材料 物理化学 色谱法 工程类 环境工程
作者
Lianqi Zhang
出处
期刊:Meeting abstracts 卷期号:MA2016-03 (2): 125-125
标识
DOI:10.1149/ma2016-03/2/125
摘要

A significant drawback for Li-rich layered materials is the low tap and compaction density in contrast to layered LiMO 2 [1]. Thus, improving tap density is an important issue for Li-rich layered materials. In our work, some efforts are contributed to addressing the issue. On one hand, a new pre-heat treatment procedure of carbonate precursors firstly using N 2 and then O 2 is adopted to separate processes of CO 2 emission and O 2 absorption, which presumably can reduce porosity of materials and then result in an improved tap density. The remarkably improved tap density of metal oxide (2.20 g cm –1 ) and cathode material (2.20 g cm –1 ) is observed with the procedure. However, it is at a cost of capacity. On the other hand, the dual chelating agents, ammonia and oxalate, which have a synergistic action on chelating transition-metal ion, are successfully introduced to prepare high tap density hydroxide precursors (1.67 g cm –3 ) and Li-rich cathode (2.28 g cm –3 ) with atomic level uniformity of elemental distribution. From Fig.1 (b) and (c), it is obviously found that the two-steps procedure is indeed beneficial for obtaining the dense morphology with less pores, resulting in a higher tap density. From Fig.2, with the function of the dual chelating agents, the spherical secondary particles with dense morphology, which are closely aggregated from nano-sized primary particles, are demonstrated to be obtained. References [1] P.Oh, S. Myeong, W. Cho, M.-J. Lee, M. Ko, H.Y. Jeong, J. Cho, Nano Lett. 14 (2014) 5965−5972. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘强发布了新的文献求助10
刚刚
NexusExplorer应助cc采纳,获得30
1秒前
JamesPei应助Wonderland采纳,获得10
1秒前
微微发布了新的文献求助10
1秒前
Lizhenzhen123发布了新的文献求助10
1秒前
1秒前
Qionglin发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
卿18900681672完成签到,获得积分10
4秒前
Luffa完成签到,获得积分10
4秒前
乐观沛白完成签到,获得积分10
5秒前
杨衍发布了新的文献求助10
5秒前
sh131完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
852应助刘强采纳,获得10
7秒前
8秒前
8秒前
啊盘完成签到 ,获得积分10
8秒前
可爱的函函应助solar采纳,获得10
8秒前
风清扬发布了新的文献求助10
8秒前
fe999完成签到,获得积分10
9秒前
木子Lee发布了新的文献求助10
9秒前
9秒前
10秒前
在水一方应助微微采纳,获得10
10秒前
11秒前
Lizhenzhen123完成签到,获得积分10
11秒前
11秒前
ZWL发布了新的文献求助10
11秒前
George发布了新的文献求助10
11秒前
12秒前
告白气球发布了新的文献求助10
12秒前
12秒前
mzm完成签到,获得积分10
12秒前
CodeCraft应助楼下太吵了采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194106
求助须知:如何正确求助?哪些是违规求助? 4376448
关于积分的说明 13629417
捐赠科研通 4231351
什么是DOI,文献DOI怎么找? 2320965
邀请新用户注册赠送积分活动 1319192
关于科研通互助平台的介绍 1269564