Cyclodextrin Complexes: Chiral Recognition and Complexation Behaviour

对映体 化学 分子动力学 环糊精 分子识别 对接(动物) 超分子化学 毛细管电泳 色氨酸 分子 计算化学 分子模型 非共价相互作用 生物信息学 氨基酸 立体化学 氢键 有机化学 色谱法 医学 生物化学 护理部 基因
作者
Zsolt Bikádi,Róbert Iványi,Lajos Szente,István Ilisz,Eszter Hazai
出处
期刊:Current Drug Discovery Technologies [Bentham Science]
卷期号:4 (4): 282-294 被引量:13
标识
DOI:10.2174/157016307783220549
摘要

Cyclodextrins are well known in supramolecular chemistry as host molecules capable of engulfing molecules in their hydrophobic cavity via noncovalent interactions. Although cyclodextrins are frequently used for chiral separation of racemates, the mechanism of chiral recognition has not yet been fully characterised. The current investigation was aimed at examining chiral recognition mechanism in order to construct an in silico method for prediction of chiral recognition. Amino acids were selected as model guest, whereas alphaCD was used as model host. The results of molecular docking and molecular dynamic calculations were compared to results of stability constant determination and capillary electrophoresis measurements of enantioseparations. Positive correlation between binding strength and chiral separation ability was found. However, the small energy differences between interaction energy of each enantiomer with alphaCD fell into the range of standard error of molecular docking calculations limiting its applicability for in silico prediction. Examining the stability of complex geometry during molecular dynamics simulation revealed that stable complex geometry is likely to be a prerequisite for chiral recognition. This hypothesis was tested on methylderivatized tryptophan. Indeed, chiral separation of beta-methyl-tryptophans by alphaCD could be successfully predicted by examining the complex geometries during molecular dynamic simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
英吉利25发布了新的文献求助20
刚刚
1秒前
讨厌太阳完成签到,获得积分20
1秒前
2秒前
lsylsylsy完成签到,获得积分10
2秒前
虚心碧发布了新的文献求助10
2秒前
Tsuki完成签到,获得积分10
2秒前
2秒前
2秒前
香蕉觅云应助机智妙之采纳,获得10
3秒前
3秒前
3秒前
3秒前
Yao发布了新的文献求助20
3秒前
4秒前
漂亮幻莲发布了新的文献求助10
4秒前
李健的小迷弟应助微课采纳,获得10
4秒前
4秒前
锅包肉发布了新的文献求助10
4秒前
852应助小万万采纳,获得10
5秒前
CipherSage应助dddd采纳,获得10
5秒前
顾矜应助阿玖采纳,获得10
5秒前
浮游应助Lucy采纳,获得10
5秒前
41完成签到,获得积分10
5秒前
dd发布了新的文献求助10
5秒前
5秒前
QAQ小白发布了新的文献求助10
5秒前
冷酷严青发布了新的文献求助10
5秒前
健康的千易完成签到,获得积分10
6秒前
顾矜应助wxnice采纳,获得10
6秒前
恒星七纪给恒星七纪的求助进行了留言
6秒前
無羡完成签到,获得积分10
7秒前
喜悦晓灵完成签到,获得积分10
7秒前
无花果应助飘飘女侠采纳,获得10
7秒前
不安的秋白完成签到,获得积分10
7秒前
vividkingking完成签到 ,获得积分10
7秒前
wanci应助clear采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473404
求助须知:如何正确求助?哪些是违规求助? 4575556
关于积分的说明 14353248
捐赠科研通 4503084
什么是DOI,文献DOI怎么找? 2467419
邀请新用户注册赠送积分活动 1455329
关于科研通互助平台的介绍 1429357