Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system

抗生素 万古霉素 微生物学 金黄色葡萄球菌 败血症 细菌 细菌生长 琼脂糖 最小抑制浓度 生物 免疫学 分子生物学 遗传学
作者
Jungil Choi,Yong‐Gyun Jung,Jeewoo Kim,Sung‐Bum Kim,Yushin Jung,Hunjong Na,Sunghoon Kwon
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:13 (2): 280-287 被引量:185
标识
DOI:10.1039/c2lc41055a
摘要

Sepsis is one of the major causes of death in the US, necessitating rapid treatment with proper antibiotics. Conventional systems for antibiotic susceptibility testing (AST) take far too long (16–24 h) for the timely treatment of sepsis. This is because they rely on measuring optical density, which relates to bacterial growth, to determine the minimal inhibitory concentrations (MICs) of relevant antibiotics. Thus, there is a desperate need for more improved and rapid AST (RAST) systems. The RAST system can also reduce the growing number of clinical problems that are associated with antibiotic resistance caused by methicillin-resistant Staphylococcus aureus, vancomycin-resistant Staphylococcus aureus, and vancomycin-resistant enterococci. In this study, we demonstrate a microfluidic agarose channel (MAC) system that reduces the AST assay time for determining MICs by single bacterial time lapse imaging. The MAC system immobilizes bacteria by using agarose in a microfluidic culture chamber so that single cell growth can be tracked by microscopy. Time lapse images of single bacterial cells under different antibiotic culture conditions were analyzed by image processing to determine MICs. Three standard bacteria from the Clinical and Laboratory Standard Institute (CLSI) were tested with several kinds of antibiotics. MIC values that were well matched with those of the CLSI were obtained within only 3–4 h. We expect that the MAC system can offer rapid diagnosis of sepsis and thus, more efficient and proper medication in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Joins_Su完成签到 ,获得积分10
1秒前
喜爱大白兔完成签到,获得积分10
4秒前
杨涵发布了新的文献求助10
4秒前
白云之上完成签到,获得积分10
4秒前
4秒前
华仔应助Jnscal采纳,获得10
4秒前
7890733发布了新的文献求助10
5秒前
6秒前
7秒前
张张张完成签到,获得积分10
7秒前
过段时间发布了新的文献求助10
7秒前
7秒前
10秒前
小橘子完成签到,获得积分10
11秒前
momo发布了新的文献求助10
11秒前
俭朴新之完成签到 ,获得积分10
11秒前
上官若男应助zzd采纳,获得10
12秒前
12秒前
12秒前
新楚完成签到 ,获得积分10
13秒前
羊羊发布了新的文献求助10
13秒前
13秒前
小蘑材完成签到,获得积分10
16秒前
等待安柏发布了新的文献求助10
16秒前
18秒前
19秒前
001021完成签到,获得积分10
19秒前
20秒前
Emiya完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
华仔应助虾条采纳,获得10
23秒前
白云之上发布了新的文献求助10
25秒前
zzd发布了新的文献求助10
25秒前
25秒前
轻松无剑发布了新的文献求助10
27秒前
辞镜发布了新的文献求助30
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534