Physiological, biochemical, and genome‐wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels

光呼吸 光合作用 拟南芥 生物量(生态学) 植物生理学 拟南芥 氧化应激 叶绿素荧光 生物 光系统II 化学 生物化学 植物 生态学 基因 突变体
作者
Gaurav Zinta,Hamada AbdElgawad,Malgorzata A. Domagalska,Lucia Vergauwen,Dries Knapen,Ivan Nijs,Ivan A. Janssens,Gerrit T.S. Beemster,Han Asard
出处
期刊:Global Change Biology [Wiley]
卷期号:20 (12): 3670-3685 被引量:170
标识
DOI:10.1111/gcb.12626
摘要

Abstract Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO 2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco ‐ physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO 2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane ‐ protecting enzymes. Elevated CO 2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H 2 O 2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress ‐ mitigating CO 2 effect operates through up‐regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO 2 is likely to mitigate this effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助zpq采纳,获得10
刚刚
苦行僧发布了新的文献求助10
刚刚
stellafreeman发布了新的文献求助50
1秒前
啊懂发布了新的文献求助10
1秒前
温暖的南露关注了科研通微信公众号
2秒前
4秒前
柿安驳回了孙燕应助
4秒前
6秒前
小唐发布了新的文献求助100
7秒前
无花果应助lelele采纳,获得10
10秒前
10秒前
达达完成签到,获得积分10
11秒前
英姑应助来都来了采纳,获得10
12秒前
12秒前
12秒前
阿紫吖完成签到,获得积分10
13秒前
inRe发布了新的文献求助10
14秒前
15秒前
怕孤单的破茧完成签到,获得积分10
15秒前
心灵美的皮皮虾完成签到,获得积分10
16秒前
16秒前
科目三应助肖肖采纳,获得10
17秒前
17秒前
三三发布了新的文献求助10
18秒前
18秒前
MOMO发布了新的文献求助10
19秒前
ll发布了新的文献求助10
19秒前
20秒前
inRe完成签到,获得积分10
20秒前
20秒前
祁瓀完成签到,获得积分10
21秒前
22秒前
100发布了新的文献求助10
23秒前
24秒前
所所应助年轻的咖啡豆采纳,获得10
25秒前
科研修沟发布了新的文献求助10
25秒前
帅马发布了新的文献求助50
25秒前
25秒前
科研通AI5应助祁瓀采纳,获得10
25秒前
26秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833008
求助须知:如何正确求助?哪些是违规求助? 3375402
关于积分的说明 10488891
捐赠科研通 3095006
什么是DOI,文献DOI怎么找? 1704175
邀请新用户注册赠送积分活动 819834
科研通“疑难数据库(出版商)”最低求助积分说明 771661