化学
电喷雾电离
质谱法
烟气脱硫
硫黄
氧气
寡核苷酸
色谱法
萃取电喷雾电离
电喷雾质谱
电离
电喷雾
质谱中的样品制备
有机化学
生物化学
离子
DNA
作者
Lianming Wu,David White,Connie Ye,Frederick G. Vogt,Gerald Terfloth,Hayao Matsuhashi
摘要
While the occurrence of desulfurization of phosphorothioate oligonucleotides in solution is well established, this study represents the first attempt to investigate the basis of the unexpected desulfurization via the net sulfur‐by‐oxygen (S‐O) replacement during negative electrospray ionization (ESI). The current work, facilitated by quantitative mass deconvolution, demonstrates that considerable desulfurization can take place even under common negative ESI operating conditions. The extent of desulfurization is dependent on the molar phosphorothioate oligonucleotide‐to‐hydroxyl radical ratio, which is consistent with the corona discharge‐induced origin of the hydroxyl radical leading to the S‐O replacement. This hypothesis is supported by the fact that an increase of the high‐performance liquid chromatography (HPLC) flow rate and the on‐column concentration of a phosphorothioate oligonucleotide, as well as a decrease of the electrospray voltage reduce the degree of desulfurization. Comparative LC‐tandem mass spectrometry (MS/MS) sequencing of a phosphorothioate oligonucleotide and its corresponding desulfurization product revealed evidence that the S‐O replacement occurs at multiple phosphorothioate internucleotide linkage sites. In practice, the most convenient and effective strategy for minimizing this P = O artifact is to increase the LC flow rate and the on‐column concentration of phosphorothioate oligonucleotides. Another approach to mitigate possible detrimental effects of the undesired desulfurization is to operate the ESI source at a very low electrospray voltage to diminish the corona discharge; however this will significantly compromise sensitivity when analyzing the low‐level P = O impurities in phosphorothioate oligonucleotides. Copyright © 2012 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI