泰文定理
荷电状态
电池(电)
在线模型
测功机
扩展卡尔曼滤波器
工程类
等效电路
卡尔曼滤波器
内阻
电动汽车
电压
地铁列车时刻表
功率(物理)
控制理论(社会学)
计算机科学
汽车工程
电气工程
数学
物理
人工智能
统计
量子力学
控制(管理)
操作系统
作者
Hongwen He,Rui Xiong,Hongqiang Guo
出处
期刊:Applied Energy
[Elsevier BV]
日期:2011-09-07
卷期号:89 (1): 413-420
被引量:360
标识
DOI:10.1016/j.apenergy.2011.08.005
摘要
The accurate estimation of internal parameters and state-of-charge (SoC) of battery, which greatly depends on proper models and corresponding high-efficiency, high-accuracy algorithms, is one of the critical issues for the battery management system. A model-based online estimation method of a LiFePO4 battery is presented for application in electric vehicles (EVs) by using an adaptive extended Kalman filter (AEKF) algorithm. The Thevenin equivalent circuit model is selected to model the LiFePO4 battery and its mathematics equations are deduced to some extent. Additionally, an implementation of the AEKF algorithm is elaborated and employed for the online parameters’ estimation of the LiFePO4 battery model. To illustrate advantages of the online parameters’ estimation, a comparison analysis is performed on the terminal voltages between the online estimation and the offline calculation under the Hybrid pulse power characteristic (HPPC) test and the Urban Dynamometer Driving Schedule (UDDS) test. Furthermore, an efficient online SoC estimation approach based on the online estimation result of open-circuit voltage (OCV) is proposed. The experimental results show that the online SoC estimation based on OCV–SoC can efficiently limit the error below 0.041.
科研通智能强力驱动
Strongly Powered by AbleSci AI