亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Fungus Spores Dataset and a Convolutional Neural Network Based Approach for Fungus Detection

卷积神经网络 真菌 计算机科学 人工智能 孢子 模式识别(心理学) 生物 植物
作者
Muhammad Tahir,Nayyer Abbas Zaidi,Adeel Akhtar Rao,Roland Blank,Michael J. Vellekoop,Walter Lang
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 281-290 被引量:63
标识
DOI:10.1109/tnb.2018.2839585
摘要

Fungus is enormously notorious for food, human health, and archives. Fungus sign and symptoms in medical science are non-specific and asymmetrical for extremely large areas resulting into a challenging task of fungal detection. Various traditional and computer vision techniques were applied to meet the challenge of early fungus detection. On the other hand, features learned through the convolutional neural network (CNN) provided state-of-the-art results in many other applications of object detection and classification. However, the large amount of data is an essential prerequisite for its effective application. In pursuing this idea, we present a novel fungus dataset of its kind, with the goal of advancing the state of the art in fungus classification by placing the question of fungus detection. This is achieved by gathering various images of complex fungal spores by extracting samples from contaminated fruits, archives, and laboratory-incubated fungus colonies. These images primarily consisted of five different types of fungus spores and dirt. An optical sensor system was utilized to obtain these images, which were further annotated to mark fungal spores as a region of interest using specially designed graphical user interface. As a result, 40,800 labeled images were used to develop the fungus dataset to aid in precise fungus detection and classification. The other main objective of this research was to develop a CNN-based approach for the detection of fungus and distinguish different types of fungus. A CNN architecture was designed, and it showed the promising results with an accuracy of 94.8%. The obtained results proved the possibility of early detection of several types of fungus spores using CNN and could estimate all possible threats due to fungus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcc111完成签到,获得积分10
8秒前
牛奶完成签到,获得积分20
8秒前
洁白的故人完成签到 ,获得积分10
11秒前
haojiaolv完成签到,获得积分10
17秒前
abc完成签到 ,获得积分10
20秒前
非泥完成签到,获得积分10
24秒前
Hello应助冷静机器猫采纳,获得10
25秒前
庄严完成签到,获得积分10
27秒前
亓灬发布了新的文献求助10
31秒前
伶俐绿柏完成签到 ,获得积分10
34秒前
35秒前
阿九完成签到,获得积分10
37秒前
fzh发布了新的文献求助10
38秒前
38秒前
LeoBigman完成签到 ,获得积分10
42秒前
44秒前
Nium完成签到,获得积分10
45秒前
亓灬完成签到,获得积分10
49秒前
淡定从霜完成签到 ,获得积分10
55秒前
庄严发布了新的文献求助10
1分钟前
Mu完成签到,获得积分10
1分钟前
1分钟前
饱满的百招完成签到 ,获得积分10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
昂口3完成签到 ,获得积分10
1分钟前
Ida完成签到 ,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
1分钟前
cwj完成签到,获得积分10
1分钟前
万能图书馆应助fl采纳,获得10
1分钟前
Milktea123完成签到,获得积分10
1分钟前
Ricardo完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
carl发布了新的文献求助10
1分钟前
fl发布了新的文献求助10
1分钟前
水水水完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助carl采纳,获得10
1分钟前
2分钟前
迷你的靖雁完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780773
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226477
捐赠科研通 3041419
什么是DOI,文献DOI怎么找? 1669379
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758723