Ensemble-based big data analytics of lithofacies for automatic development of petroleum reservoirs

集成学习 计算机科学 人工智能 机器学习 大数据 随机森林 阿达布思 储层建模 集合预报 原始数据 数据挖掘 支持向量机 工程类 石油工程 程序设计语言
作者
Saurabh Tewari,U. D. Dwivedi
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:128: 937-947 被引量:69
标识
DOI:10.1016/j.cie.2018.08.018
摘要

Big data-driven ensemble learning is explored in this paper for quantitative geological lithofacies modeling, which is an integral and challenging part of petroleum reservoir development and characterization. Quantitative lithofacies modeling involves detection and recognition of underlying subsurface rock’s lithofacies. It requires real-time data acquisition, handling, storage, conditioning, analysis, and interpretation of raw sensory petroleum logging data. The real-time well-logs data collected from the sensor-based tools suffer from complications such as noise, nonlinearity, imbalance, and high-dimensionality which makes the prediction task more challenging. The existing literature on quantitative lithofacies modeling includes several data-driven techniques ranging from conventional well-logs to artificial intelligence (AI). Recently, multiple classifiers based Ensemble learners have been found to be more robust and reliable paradigms for detection and identification tasks in various machine learning applications, however, these are not well embraced in the petroleum industry. Ensemble methodology combines diverse expert’s opinions to obtain overall ensemble decision which in turn reduces the risk of a wrong decision. Thus, the uncertainties associated with complex reservoir data can be better handled by the use of Ensemble learners than the existing single learner based conventional models. Ensemble-based big data analytics, proposed in the paper, includes development and comparative performance testing of five popular ensemble methods (viz. Bagging, AdaBoost, Rotation forest, Random subspace, and DECORATE) for quantitative lithofacies modeling. Seven state-of-the-art base classifiers were used as members of different Ensemble learners for the analysis of Kansas (U.S.A.) oil-field data. The proposed techniques have been implemented on the widely used WEKA platform. The comparative performance analysis of the proposed techniques, presented in the paper, confirms its supremacy over the existing techniques used for quantitative lithofacies modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁荣的半梦完成签到,获得积分10
刚刚
zry发布了新的文献求助10
1秒前
方超完成签到,获得积分10
1秒前
田様应助迅速映容采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
文静的涑完成签到,获得积分10
2秒前
大模型应助Zzzhou23采纳,获得10
2秒前
2秒前
科研通AI6应助愚林2024采纳,获得10
2秒前
wy.he应助柯筱采纳,获得50
3秒前
复成完成签到 ,获得积分10
4秒前
星星火完成签到,获得积分10
4秒前
April完成签到,获得积分10
4秒前
5秒前
傅姐完成签到 ,获得积分10
5秒前
6秒前
霸气店员发布了新的文献求助10
6秒前
gn科研完成签到,获得积分10
6秒前
6秒前
6秒前
tian发布了新的文献求助10
8秒前
大龙哥886应助多多采纳,获得10
8秒前
科目三应助多多采纳,获得10
8秒前
8秒前
米奇发布了新的文献求助10
8秒前
8秒前
白羽完成签到,获得积分10
9秒前
蒋若风发布了新的文献求助10
9秒前
zz完成签到,获得积分10
9秒前
科研通AI2S应助弄潮儿采纳,获得10
9秒前
所所应助开心的西瓜采纳,获得10
9秒前
Ian发布了新的文献求助10
10秒前
32kekediffers完成签到,获得积分10
10秒前
10秒前
yongheng发布了新的文献求助10
10秒前
科研通AI6应助卜星凡采纳,获得30
10秒前
13AS完成签到,获得积分10
10秒前
酷波er应助jijiguo采纳,获得10
10秒前
10秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610445
求助须知:如何正确求助?哪些是违规求助? 4694923
关于积分的说明 14885144
捐赠科研通 4722453
什么是DOI,文献DOI怎么找? 2545155
邀请新用户注册赠送积分活动 1509949
关于科研通互助平台的介绍 1473063