Using Artificial Intelligence to Revise ACR TI-RADS Risk Stratification of Thyroid Nodules: Diagnostic Accuracy and Utility

医学 接收机工作特性 甲状腺结节 人工智能 放射科 回声 危险分层 活检 双雷达 机器学习 甲状腺 核医学 超声科 计算机科学 内科学 癌症 乳腺癌 乳腺摄影术
作者
Benjamin Wildman‐Tobriner,Mateusz Buda,Jenny K. Hoang,William D. Middleton,David Thayer,Ryan G. Short,Franklin N. Tessler,Maciej A. Mazurowski
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (1): 112-119 被引量:122
标识
DOI:10.1148/radiol.2019182128
摘要

Background Risk stratification systems for thyroid nodules are often complicated and affected by low specificity. Continual improvement of these systems is necessary to reduce the number of unnecessary thyroid biopsies. Purpose To use artificial intelligence (AI) to optimize the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Materials and Methods A total of 1425 biopsy-proven thyroid nodules from 1264 consecutive patients (1026 women; mean age, 52.9 years [range, 18–93 years]) were evaluated retrospectively. Expert readers assigned points based on five ACR TI-RADS categories (composition, echogenicity, shape, margin, echogenic foci), and a genetic AI algorithm was applied to a training set (1325 nodules). Point and pathologic data were used to create an optimized scoring system (hereafter, AI TI-RADS). Performance of the systems was compared by using a test set of the final 100 nodules with interpretations from the expert reader, eight nonexpert readers, and an expert panel. Initial performance of AI TI-RADS was calculated by using a test for differences between binomial proportions. Additional comparisons across readers were conducted by using bootstrapping; diagnostic performance was assessed by using area under the receiver operating curve. Results AI TI-RADS assigned new point values for eight ACR TI-RADS features. Six features were assigned zero points, which simplified categorization. By using expert reader data, the diagnostic performance of ACR TI-RADS and AI TI-RADS was area under the receiver operating curve of 0.91 and 0.93, respectively. For the same expert, specificity of AI TI-RADS (65%, 55 of 85) was higher (P < .001) than that of ACR TI-RADS (47%, 40 of 85). For the eight nonexpert radiologists, mean specificity for AI TI-RADS (55%) was also higher (P < .001) than that of ACR TI-RADS (48%). An interactive AI TI-RADS calculator can be viewed at http://deckard.duhs.duke.edu/∼ai-ti-rads. Conclusion An artificial intelligence–optimized Thyroid Imaging Reporting and Data System (TI-RADS) validates the American College of Radiology TI-RADS while slightly improving specificity and maintaining sensitivity. Additionally, it simplifies feature assignments, which may improve ease of use. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
希望天下0贩的0应助AuH采纳,获得10
5秒前
Silverexile完成签到,获得积分10
6秒前
6秒前
王小明发布了新的文献求助10
9秒前
aldehyde应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
姜莹应助科研通管家采纳,获得30
10秒前
aldehyde应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
打打应助科研通管家采纳,获得10
11秒前
11秒前
2586485747完成签到,获得积分20
11秒前
乐观发布了新的文献求助10
12秒前
张雨璇完成签到,获得积分10
13秒前
13秒前
辉辉发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
小小绿应助努力的混子采纳,获得10
14秒前
彭于晏应助满意的小智采纳,获得10
14秒前
完美世界应助风清扬采纳,获得10
15秒前
16秒前
子健完成签到,获得积分10
17秒前
re发布了新的文献求助10
18秒前
丁一发布了新的文献求助10
18秒前
2586485747发布了新的文献求助10
18秒前
秦小荷发布了新的文献求助10
18秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046729
求助须知:如何正确求助?哪些是违规求助? 3584566
关于积分的说明 11392416
捐赠科研通 3312053
什么是DOI,文献DOI怎么找? 1822386
邀请新用户注册赠送积分活动 894444
科研通“疑难数据库(出版商)”最低求助积分说明 816275