Using Artificial Intelligence to Revise ACR TI-RADS Risk Stratification of Thyroid Nodules: Diagnostic Accuracy and Utility

医学 接收机工作特性 甲状腺结节 人工智能 放射科 回声 危险分层 活检 双雷达 机器学习 甲状腺 核医学 超声科 计算机科学 内科学 癌症 乳腺癌 乳腺摄影术
作者
Benjamin Wildman‐Tobriner,Mateusz Buda,Jenny K. Hoang,William D. Middleton,David Thayer,Ryan G. Short,Franklin N. Tessler,Maciej A. Mazurowski
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (1): 112-119 被引量:118
标识
DOI:10.1148/radiol.2019182128
摘要

Background Risk stratification systems for thyroid nodules are often complicated and affected by low specificity. Continual improvement of these systems is necessary to reduce the number of unnecessary thyroid biopsies. Purpose To use artificial intelligence (AI) to optimize the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Materials and Methods A total of 1425 biopsy-proven thyroid nodules from 1264 consecutive patients (1026 women; mean age, 52.9 years [range, 18–93 years]) were evaluated retrospectively. Expert readers assigned points based on five ACR TI-RADS categories (composition, echogenicity, shape, margin, echogenic foci), and a genetic AI algorithm was applied to a training set (1325 nodules). Point and pathologic data were used to create an optimized scoring system (hereafter, AI TI-RADS). Performance of the systems was compared by using a test set of the final 100 nodules with interpretations from the expert reader, eight nonexpert readers, and an expert panel. Initial performance of AI TI-RADS was calculated by using a test for differences between binomial proportions. Additional comparisons across readers were conducted by using bootstrapping; diagnostic performance was assessed by using area under the receiver operating curve. Results AI TI-RADS assigned new point values for eight ACR TI-RADS features. Six features were assigned zero points, which simplified categorization. By using expert reader data, the diagnostic performance of ACR TI-RADS and AI TI-RADS was area under the receiver operating curve of 0.91 and 0.93, respectively. For the same expert, specificity of AI TI-RADS (65%, 55 of 85) was higher (P < .001) than that of ACR TI-RADS (47%, 40 of 85). For the eight nonexpert radiologists, mean specificity for AI TI-RADS (55%) was also higher (P < .001) than that of ACR TI-RADS (48%). An interactive AI TI-RADS calculator can be viewed at http://deckard.duhs.duke.edu/∼ai-ti-rads. Conclusion An artificial intelligence–optimized Thyroid Imaging Reporting and Data System (TI-RADS) validates the American College of Radiology TI-RADS while slightly improving specificity and maintaining sensitivity. Additionally, it simplifies feature assignments, which may improve ease of use. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏silence发布了新的文献求助10
2秒前
weizhi完成签到,获得积分10
2秒前
科研通AI2S应助fanghua采纳,获得10
4秒前
lily发布了新的文献求助10
5秒前
芊慧发布了新的文献求助10
6秒前
yyy完成签到,获得积分10
7秒前
竹子完成签到,获得积分10
9秒前
10秒前
Alanni完成签到 ,获得积分10
10秒前
14秒前
大鱼儿发布了新的文献求助30
19秒前
在水一方应助blueberry采纳,获得10
20秒前
20秒前
22秒前
田様应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
朝暮应助科研通管家采纳,获得30
22秒前
22秒前
zmnzmnzmn应助科研通管家采纳,获得10
22秒前
zmnzmnzmn应助科研通管家采纳,获得10
22秒前
22秒前
lily完成签到,获得积分10
24秒前
siagen完成签到,获得积分10
24秒前
26秒前
fanghua完成签到,获得积分20
26秒前
gao_yiyi应助大鱼儿采纳,获得10
28秒前
29秒前
andrele应助Siliang采纳,获得10
33秒前
blueberry发布了新的文献求助10
34秒前
酷波er应助iman采纳,获得10
34秒前
跳跳虎发布了新的文献求助10
36秒前
上官若男应助ray采纳,获得10
37秒前
blind完成签到,获得积分10
39秒前
小鸣完成签到 ,获得积分10
40秒前
Llllll发布了新的文献求助40
40秒前
FashionBoy应助犹豫的夏波采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778908
求助须知:如何正确求助?哪些是违规求助? 3324476
关于积分的说明 10218591
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440