A review on 2D instance segmentation based on deep neural networks

分割 计算机科学 人工智能 深度学习 人工神经网络 市场细分 图像分割 基于分割的对象分类 模式识别(心理学) 深层神经网络 尺度空间分割 机器学习 业务 营销
作者
Wenchao Gu,Shuang Bai,Lingxing Kong
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:120: 104401-104401 被引量:146
标识
DOI:10.1016/j.imavis.2022.104401
摘要

Image instance segmentation involves labeling pixels of images with classes and instances, which is one of the pivotal technologies in many domains, such as natural scenes understanding, intelligent driving, augmented reality and medical image analysis. With the power of deep learning, instance segmentation methods that use this technique have recently achieved remarkable progress. In this survey, we mainly discuss the representative 2D instance segmentation methods based on deep neural networks. Firstly, we summarize current fully-, weakly- and semi-supervised instance segmentation methods, and divide existing fully-supervised methods into three sub-categories depending on the number of stages. Based on our investigation, we conclude that currently, two-stage methods dominate the frontier of general instance segmentation; single-stage methods can achieve a better speed-accuracy trade-off, and multi-stage methods can achieve higher accuracy. Secondly, we introduce eleven datasets and three evaluation metrics for evaluating instance segmentation methods that can help researchers decide which one to choose to meet their needs and goals. Then the innovation and quantitative results of state-of-the-art general instance segmentation methods and specific instance segmentation methods (including salient instance segmentation, person instance segmentation, and amodal instance segmentation) are reviewed. In what follows, the common backbone networks are reviewed to better explain the reasons that why deep neural networks-based instance segmentation methods can achieve excellent performance. Finally, the future research directions and potential applications of instance segmentation are discussed, which can facilitates researchers to realize the existing technical difficulties and recent research hotspots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
明志完成签到,获得积分10
1秒前
体贴的曼凝完成签到,获得积分10
1秒前
1秒前
知了完成签到,获得积分10
2秒前
清爽鸡翅发布了新的文献求助10
2秒前
2秒前
兴奋的谷兰完成签到,获得积分10
2秒前
玉米豆发布了新的文献求助10
3秒前
杨海菡发布了新的文献求助10
3秒前
可耐的Gamma完成签到,获得积分10
3秒前
9xixixixixixixi完成签到,获得积分10
3秒前
3秒前
黄昏完成签到,获得积分10
3秒前
炒栗子发布了新的文献求助20
4秒前
4秒前
慕青应助八块蛮好采纳,获得10
4秒前
英勇海完成签到 ,获得积分10
4秒前
哈哈发布了新的文献求助10
4秒前
5秒前
的订单发布了新的文献求助30
5秒前
Rheet完成签到,获得积分10
5秒前
彭静琳完成签到,获得积分20
5秒前
害羞的裘完成签到 ,获得积分10
6秒前
6秒前
bkagyin应助MengFantao采纳,获得10
6秒前
Karouline完成签到,获得积分10
6秒前
狂野悟空完成签到,获得积分10
6秒前
YK完成签到,获得积分10
6秒前
开朗黑猫完成签到,获得积分10
7秒前
奋斗者完成签到,获得积分10
7秒前
8秒前
彭静琳发布了新的文献求助30
9秒前
舒心的完成签到,获得积分10
9秒前
蓝莲花完成签到 ,获得积分10
10秒前
传奇3应助杨海菡采纳,获得10
10秒前
10秒前
chenghong完成签到,获得积分20
11秒前
FashionBoy应助的订单采纳,获得10
11秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173