均质化(气候)
数学
组分(热力学)
数学分析
领域(数学分析)
应用数学
椭圆曲线
物理
热力学
生态学
生物
生物多样性
作者
Jemmalyn Grace H. Santiago,Bituin Cabarrubias
标识
DOI:10.1080/00036811.2022.2101454
摘要
This paper deals with the asymptotic behavior of a quasilinear elliptic problem with semilinear terms situated in a two-component domain in RN, N≥ 2, as ε approaches 0. The domain has an ϵ−periodic interface where the flux is discontinuous and the temperature field, depending on the real parameter γ<1, is proportional to the flux. We use the Periodic Unfolding Method for two-component domains to obtain the homogenized property of the problem separating the cases γ∈(−1,1), γ<−1 and γ=−1. The corrector results are also presented, lastly, which completes the whole homogenization process.
科研通智能强力驱动
Strongly Powered by AbleSci AI