Design-Technology Co-Optimization for NVM-Based Neuromorphic Processing Elements

神经形态工程学 计算机科学 高效能源利用 粒度 延迟(音频) 计算机体系结构 嵌入式系统 非易失性存储器 杠杆(统计) 计算机硬件 人工神经网络 人工智能 工程类 操作系统 电气工程 电信
作者
Shihao Song,Adarsha Balaji,Anup Das,Nagarajan Kandasamy
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:21 (6): 1-27 被引量:16
标识
DOI:10.1145/3524068
摘要

An emerging use case of machine learning (ML) is to train a model on a high-performance system and deploy the trained model on energy-constrained embedded systems. Neuromorphic hardware platforms, which operate on principles of the biological brain, can significantly lower the energy overhead of an ML inference task, making these platforms an attractive solution for embedded ML systems. We present a design-technology tradeoff analysis to implement such inference tasks on the processing elements (PEs) of a non-volatile memory (NVM)-based neuromorphic hardware. Through detailed circuit-level simulations at scaled process technology nodes, we show the negative impact of technology scaling on the information-processing latency, which impacts the quality of service of an embedded ML system. At a finer granularity, the latency inside a PE depends on (1) the delay introduced by parasitic components on its current paths, and (2) the varying delay to sense different resistance states of its NVM cells. Based on these two observations, we make the following three contributions. First, on the technology front, we propose an optimization scheme where the NVM resistance state that takes the longest time to sense is set on current paths having the least delay, and vice versa, reducing the average PE latency, which improves the quality of service. Second, on the architecture front, we introduce isolation transistors within each PE to partition it into regions that can be individually power-gated, reducing both latency and energy. Finally, on the system-software front, we propose a mechanism to leverage the proposed technological and architectural enhancements when implementing an ML inference task on neuromorphic PEs of the hardware. Evaluations with a recent neuromorphic hardware architecture show that our proposed design-technology co-optimization approach improves both performance and energy efficiency of ML inference tasks without incurring high cost-per-bit.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aero完成签到,获得积分10
1秒前
美满熊猫完成签到,获得积分10
2秒前
hhc发布了新的文献求助10
4秒前
浮生六记完成签到 ,获得积分10
6秒前
ne完成签到 ,获得积分10
6秒前
鼠鼠完成签到 ,获得积分10
7秒前
lv完成签到,获得积分10
7秒前
8秒前
Physio完成签到,获得积分10
8秒前
Akim应助rachel采纳,获得30
9秒前
大龙哥886应助无心的苡采纳,获得10
9秒前
11秒前
66发布了新的文献求助10
13秒前
tanlei发布了新的文献求助10
16秒前
nancyshine发布了新的文献求助10
17秒前
青春借贷完成签到,获得积分10
20秒前
susu发布了新的文献求助10
23秒前
ScholarZmm完成签到,获得积分10
24秒前
迷路的幼南完成签到,获得积分10
24秒前
24秒前
孙同学完成签到,获得积分10
25秒前
san完成签到,获得积分10
26秒前
Ian发布了新的文献求助10
26秒前
Jenifer完成签到,获得积分10
27秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
tanlei完成签到 ,获得积分20
28秒前
URDGUYGUESKHLO完成签到,获得积分10
30秒前
深情安青应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
30秒前
赘婿应助科研通管家采纳,获得10
30秒前
30秒前
ccnnzzz完成签到,获得积分10
30秒前
聪明凡之应助科研通管家采纳,获得10
30秒前
绵绵应助科研通管家采纳,获得10
31秒前
吴欣荃完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603979
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856475
捐赠科研通 4695849
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507256
关于科研通互助平台的介绍 1471832