Feature Wavelength Selection Based on the Combination of Image and Spectrum for Aflatoxin B1 Concentration Classification in Single Maize Kernels

高光谱成像 波长 数学 模式识别(心理学) 核(代数) 黄曲霉毒素 校准 人工智能 生物系统 统计 计算机科学 化学 光学 物理 生物 食品科学 组合数学
作者
Quan Zhou,Wenqian Huang,Xi Tian
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:12 (3): 385-385 被引量:10
标识
DOI:10.3390/agriculture12030385
摘要

Aflatoxin B1 (AFB1) is a very strong carcinogen, maize kernels are easily infected by this toxin during storage. Rapid and accurate identification of AFB1 is of great significance to ensure food safety. In this study, a novel method for classification of AFB1 in single maize kernels was developed. Four groups of maize kernel samples with different AFB1 concentrations (10, 20, 50, and 100 ppb) were prepared by artificial inoculation of toxin. In addition, one group of maize kernel samples without AFB1 were prepared as control, each group with 70 samples. The visible and short wave near-infrared (Vis-SWNIR) region (500–1000 nm) and long wave near-infrared (LWNIR) region (1000–2000 nm) hyperspectral images of all samples were obtained respectively, and the hyperspectral images in 500–2000 nm range was obtained after spectral pretreatment and fusion. Kennard-Stone algorithm was used to divide the samples into calibration set or prediction set. Competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to roughly select the characteristic wavelengths of the calibration set samples, and 25 and 26 effective wavelengths were obtained respectively. Based on the roughly selected wavelengths, a method of fine selection of the characteristic wavelengths was proposed by using the gray-value difference of image (GDI), and a few number of characteristic wavelengths were further selected. Under the LDA classification model, 10 characteristic wavelengths were selected to test the prediction set and the independent verification samples, and the ideal result were obtained with an accuracy of 94.46% and 91.11%, respectively. This study provides a new approach for AFB1 concentration classification of single maize kernels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
火星上白安完成签到,获得积分10
1秒前
穆伟祺应助yuan采纳,获得10
1秒前
Herrily完成签到,获得积分10
2秒前
cc应助tutu采纳,获得10
2秒前
可爱的函函应助依妍采纳,获得10
3秒前
aifeeling完成签到,获得积分10
3秒前
忒寒碜完成签到,获得积分10
4秒前
BakedMax完成签到,获得积分10
6秒前
超级的笑天完成签到,获得积分20
6秒前
perfect发布了新的文献求助10
6秒前
共享精神应助文静元霜采纳,获得10
6秒前
博修发布了新的文献求助10
7秒前
Mtoc完成签到 ,获得积分10
7秒前
9秒前
10秒前
10秒前
斯文败类应助BakedMax采纳,获得10
12秒前
12秒前
12秒前
14秒前
HZQ应助lbhanc采纳,获得50
14秒前
。。。。发布了新的文献求助30
15秒前
麕麕完成签到 ,获得积分10
16秒前
似梦非梦完成签到,获得积分20
17秒前
18秒前
18秒前
茉莉花茶完成签到 ,获得积分10
18秒前
沉思猫发布了新的文献求助10
19秒前
彭于晏应助甜甜谷雪采纳,获得10
20秒前
大个应助Hana采纳,获得10
20秒前
20秒前
Physio完成签到,获得积分10
20秒前
jjx1005发布了新的文献求助10
21秒前
zhangsq应助Zert采纳,获得10
22秒前
Emiya发布了新的文献求助10
23秒前
搜集达人应助heheha采纳,获得10
23秒前
24秒前
24秒前
科研小白完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 1000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4307838
求助须知:如何正确求助?哪些是违规求助? 3829762
关于积分的说明 11984429
捐赠科研通 3470443
什么是DOI,文献DOI怎么找? 1903013
邀请新用户注册赠送积分活动 950326
科研通“疑难数据库(出版商)”最低求助积分说明 852278