The callus formation capacity of strawberry leaf explants is modulated by DNA methylation

生物 老茧 DNA甲基化 表观遗传学 甲基化 植物 基因 外植体培养 细胞生物学 基因表达 遗传学 体外
作者
Decai Liu,Qin Mu,Xianyang Li,Sheng Xu,Yi Li,Tingting Gu
出处
期刊:Horticulture research [Nature Portfolio]
卷期号:9 被引量:17
标识
DOI:10.1093/hr/uhab073
摘要

Abstract Shoot regeneration from leaf tissue requires the de-differentiation of cells from a highly differentiated state into an actively dividing state, but it remains unclear how this physiological transition occurs and is regulated, especially at the epigenetic level. Here, we characterized the DNA methylome represented by 5-methylcytosine (5mC) in leaf and callus tissue derived from leaf explants of woodland strawberry, Fragaria vesca. We detected an overall increase in DNA methylation and distinct 5mC enrichment patterns in the CG, CHG, and CHH sequence contexts in genes and transposable elements. Our analyses revealed an intricate relationship between DNA methylation and gene expression level in leaves or leaf-derived callus. However, when considering the genes involved in callus formation and shoot regeneration, e.g. FvePLT3/7, FveWIND3, FveWIND4, FveLOG4 and FveIAA14, their dynamic transcription levels were associated with differentially methylated regions located in the promoters or gene bodies, indicating a regulatory role of DNA methylation in the transcriptional regulation of pluripotency acquisition in strawberry. Furthermore, application of the DNA methyltransferase inhibitor 5′-azacytidine (5′-Aza) hampered both callus formation and shoot regeneration from the leaf explants. We further showed that 5′-Aza downregulated the expression of genes involved in cell wall integrity, such as expansin, pectin lyase, and pectin methylesterase genes, suggesting an essential role of cell wall metabolism during callus formation. This study reveals the contribution of DNA methylation to callus formation capacity and will provide a basis for developing a strategy to improve shoot regeneration for basic and applied research applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoye完成签到,获得积分10
刚刚
w233完成签到,获得积分10
1秒前
1秒前
快乐吗猪完成签到 ,获得积分10
1秒前
dracovu发布了新的文献求助80
2秒前
今后应助Sheelah采纳,获得10
3秒前
3秒前
领导范儿应助霍三石采纳,获得10
3秒前
核桃发布了新的文献求助150
3秒前
3秒前
小蘑菇应助windmill采纳,获得10
3秒前
缓慢修杰发布了新的文献求助10
4秒前
outbed完成签到,获得积分10
4秒前
田様应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
非而者厚应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得30
5秒前
天天快乐应助科研通管家采纳,获得50
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Mr_I完成签到,获得积分10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得30
6秒前
打打应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
碧蓝世界完成签到 ,获得积分10
7秒前
7秒前
kkk完成签到,获得积分10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910