Action Recognition Framework in Traffic Scene for Autonomous Driving System

动作识别 计算机科学 计算机视觉 人工智能 动作(物理) 智能交通系统 工程类 运输工程 物理 量子力学 班级(哲学)
作者
Feiyi Xu,Feng Xu,Jiucheng Xie,Chi‐Man Pun,Huimin Lu,Hao Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22301-22311 被引量:33
标识
DOI:10.1109/tits.2021.3135251
摘要

For the autonomous driving system, accurately recognizing the actions of different roles in the traffic scene is the prerequisite for realizing this kind of human-vehicle information interaction. In this paper, we propose a complete framework based on 3D human pose estimation to recognize the actions of different roles on the road. The main objects recognized include traffic police, cyclists, and some passersby in need. We perform action recognition based on a dynamic adaptive graph convolutional network, which can realize the action recognition of objects based on 3D human pose. In addition to the action recognition module, we have optimized both the object detection module and the human pose estimation module in the framework so that the framework can handle multiple objects at the same time, which can be closer to the real traffic scene. To realize complex and changeable human action recognition, we built a multi-view camera system to collect responsible 3D human pose datasets containing traffic police gestures, cyclist gestures, and pedestrians' body movements. In the experiments, compared to other state-of-the-art researches, the proposed framework can achieve comparable results with the same dataset. Satisfactory performance has also been obtained on the real data we collected, which can handle a variety of different action recognition tasks at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追光者完成签到,获得积分10
刚刚
刚刚
丘比特应助cumtxzs采纳,获得10
1秒前
gy发布了新的文献求助10
3秒前
健忘的板凳完成签到,获得积分10
4秒前
科研通AI5应助我要读博士采纳,获得10
4秒前
4秒前
6秒前
wangrblzu应助吴天姿采纳,获得10
6秒前
7秒前
qingshanli完成签到,获得积分10
8秒前
爱科研的琪琪完成签到,获得积分10
9秒前
joanna完成签到,获得积分10
9秒前
10秒前
mt完成签到 ,获得积分10
10秒前
10秒前
10秒前
善学以致用应助wenwen采纳,获得10
10秒前
充电宝应助刘香采纳,获得10
11秒前
小蘑菇应助稳重的凝芙采纳,获得10
11秒前
无私文博完成签到,获得积分20
12秒前
刘美丽发布了新的文献求助10
14秒前
14秒前
憨憨发布了新的文献求助10
14秒前
赘婿应助冬野采纳,获得10
14秒前
xiaoyan发布了新的文献求助10
15秒前
16秒前
tian完成签到 ,获得积分10
17秒前
传奇3应助她与论文皆失采纳,获得10
17秒前
17秒前
科研助手6应助非而者厚采纳,获得20
18秒前
华仔应助任无施采纳,获得10
18秒前
Bing发布了新的文献求助10
19秒前
21秒前
哦啦啦发布了新的文献求助10
22秒前
23秒前
向阳生长的花完成签到 ,获得积分10
24秒前
BurgerKing完成签到,获得积分10
25秒前
糕糕完成签到 ,获得积分10
25秒前
乐乐应助123采纳,获得10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842873
求助须知:如何正确求助?哪些是违规求助? 3384852
关于积分的说明 10537856
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710311
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149