A deep convolutional neural network-based automatic detection of brain metastases with and without blood vessel suppression

医学 神经组阅片室 卷积神经网络 脑转移 介入放射学 放射科 血液检验 核医学 转移 神经学 人工智能 内科学 癌症 计算机科学 精神科
作者
Yoshitomo Kikuchi,Osamu Togao,Kazufumi Kikuchi,Daichi Momosaka,Makoto Obara,Marc Van Cauteren,Alexander Fischer,Kousei Ishigami,Akio Hiwatashi
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (5): 2998-3005 被引量:16
标识
DOI:10.1007/s00330-021-08427-2
摘要

ObjectivesTo develop an automated model to detect brain metastases using a convolutional neural network (CNN) and volume isotropic simultaneous interleaved bright-blood and black-blood examination (VISIBLE) and to compare its diagnostic performance with the observer test.MethodsThis retrospective study included patients with clinical suspicion of brain metastases imaged with VISIBLE from March 2016 to July 2019 to create a model. Images with and without blood vessel suppression were used for training an existing CNN (DeepMedic). Diagnostic performance was evaluated using sensitivity and false-positive results per case (FPs/case). We compared the diagnostic performance of the CNN model with that of the twelve radiologists.ResultsFifty patients (30 males and 20 females; age range 29–86 years; mean 63.3 ± 12.8 years; a total of 165 metastases) who were clinically diagnosed with brain metastasis on follow-up were used for the training. The sensitivity of our model was 91.7%, which was higher than that of the observer test (mean ± standard deviation; 88.7 ± 3.7%). The number of FPs/case in our model was 1.5, which was greater than that by the observer test (0.17 ± 0.09).ConclusionsCompared to radiologists, our model created by VISIBLE and CNN to diagnose brain metastases showed higher sensitivity. The number of FPs/case by our model was greater than that by the observer test of radiologists; however, it was less than that in most of the previous studies with deep learning.Key Points• Our convolutional neural network based on bright-blood and black-blood examination to diagnose brain metastases showed a higher sensitivity than that by the observer test.• The number of false-positives/case by our model was greater than that by the previous observer test; however, it was less than those from most previous studies.• In our model, false-positives were found in the vessels, choroid plexus, and image noise or unknown causes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻的金毛完成签到,获得积分10
刚刚
Sara完成签到 ,获得积分10
1秒前
58984sasa完成签到,获得积分10
1秒前
千寻完成签到,获得积分10
2秒前
cicicixixici完成签到,获得积分10
2秒前
小妤丸子发布了新的文献求助10
3秒前
3秒前
薛定谔的加菲猫完成签到,获得积分10
3秒前
科研通AI5应助稀饭采纳,获得10
3秒前
科研通AI2S应助GGZ采纳,获得10
3秒前
桐桐应助GGZ采纳,获得10
4秒前
5秒前
文静灵阳发布了新的文献求助10
5秒前
李星翰完成签到,获得积分10
5秒前
伊绵好完成签到,获得积分10
6秒前
科研通AI5应助专注纹采纳,获得10
6秒前
7秒前
李星翰发布了新的文献求助10
8秒前
yuaner发布了新的文献求助10
8秒前
充电宝应助天天浇水采纳,获得10
8秒前
LH完成签到,获得积分10
9秒前
joker发布了新的文献求助10
10秒前
NexusExplorer应助123456采纳,获得10
10秒前
hyh完成签到,获得积分20
11秒前
12秒前
赘婿应助完美元柏采纳,获得10
12秒前
害羞傲薇完成签到,获得积分10
13秒前
13秒前
15秒前
C Z P完成签到,获得积分10
16秒前
科研通AI5应助C Z P采纳,获得10
18秒前
专注纹发布了新的文献求助10
19秒前
玖玖发布了新的文献求助10
19秒前
20秒前
仰望喀纳斯的星空完成签到,获得积分10
21秒前
21秒前
蓝豆子发布了新的文献求助10
23秒前
东方越彬发布了新的文献求助20
24秒前
shangx发布了新的文献求助10
24秒前
喂喂完成签到 ,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391