已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep convolutional neural network-based automatic detection of brain metastases with and without blood vessel suppression

医学 神经组阅片室 卷积神经网络 脑转移 介入放射学 放射科 血液检验 金标准(测试) 核医学 转移 外科 神经学 人工智能 内科学 癌症 计算机科学 精神科
作者
Yoshitomo Kikuchi,Osamu Togao,Kazufumi Kikuchi,Daichi Momosaka,Makoto Obara,Marc Van Cauteren,Alexander Fischer,Kousei Ishigami,Akio Hiwatashi
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (5): 2998-3005 被引量:21
标识
DOI:10.1007/s00330-021-08427-2
摘要

ObjectivesTo develop an automated model to detect brain metastases using a convolutional neural network (CNN) and volume isotropic simultaneous interleaved bright-blood and black-blood examination (VISIBLE) and to compare its diagnostic performance with the observer test.MethodsThis retrospective study included patients with clinical suspicion of brain metastases imaged with VISIBLE from March 2016 to July 2019 to create a model. Images with and without blood vessel suppression were used for training an existing CNN (DeepMedic). Diagnostic performance was evaluated using sensitivity and false-positive results per case (FPs/case). We compared the diagnostic performance of the CNN model with that of the twelve radiologists.ResultsFifty patients (30 males and 20 females; age range 29–86 years; mean 63.3 ± 12.8 years; a total of 165 metastases) who were clinically diagnosed with brain metastasis on follow-up were used for the training. The sensitivity of our model was 91.7%, which was higher than that of the observer test (mean ± standard deviation; 88.7 ± 3.7%). The number of FPs/case in our model was 1.5, which was greater than that by the observer test (0.17 ± 0.09).ConclusionsCompared to radiologists, our model created by VISIBLE and CNN to diagnose brain metastases showed higher sensitivity. The number of FPs/case by our model was greater than that by the observer test of radiologists; however, it was less than that in most of the previous studies with deep learning.Key Points• Our convolutional neural network based on bright-blood and black-blood examination to diagnose brain metastases showed a higher sensitivity than that by the observer test.• The number of false-positives/case by our model was greater than that by the previous observer test; however, it was less than those from most previous studies.• In our model, false-positives were found in the vessels, choroid plexus, and image noise or unknown causes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
polite完成签到 ,获得积分10
2秒前
WGR12138完成签到 ,获得积分10
5秒前
Li完成签到 ,获得积分10
6秒前
6秒前
heihei完成签到,获得积分10
6秒前
给好评完成签到,获得积分10
7秒前
小咸鱼完成签到 ,获得积分10
10秒前
给好评发布了新的文献求助10
10秒前
RWcreator完成签到 ,获得积分10
11秒前
13秒前
现实的邴发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
浮游应助给好评采纳,获得10
17秒前
黄sir发布了新的文献求助10
18秒前
隐形曼青应助小罗采纳,获得10
21秒前
都是知识点呐完成签到 ,获得积分10
23秒前
23秒前
24秒前
26秒前
六六发布了新的文献求助10
28秒前
可靠的一手完成签到 ,获得积分10
30秒前
30秒前
kei发布了新的文献求助10
30秒前
zzh发布了新的文献求助10
30秒前
33秒前
Dr发布了新的文献求助10
33秒前
小罗发布了新的文献求助10
34秒前
研友_VZG7GZ应助cxting采纳,获得10
34秒前
明白放弃完成签到,获得积分10
38秒前
胖头鱼完成签到 ,获得积分10
40秒前
矮小的迎天关注了科研通微信公众号
43秒前
张涛完成签到,获得积分10
48秒前
啦啦啦蛤蛤蛤完成签到 ,获得积分10
53秒前
烨枫晨曦完成签到,获得积分10
54秒前
56秒前
yuanyuan发布了新的文献求助10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432080
求助须知:如何正确求助?哪些是违规求助? 4544872
关于积分的说明 14194391
捐赠科研通 4464085
什么是DOI,文献DOI怎么找? 2446962
邀请新用户注册赠送积分活动 1438286
关于科研通互助平台的介绍 1415085