Extended Conjugation Refining Carbon Nitride with Thermodynamically Boosted Photocatalytic H2O2 Production and Application for Hypoxic Tumor Therapy

光催化 材料科学 氧化还原 制氢 析氧 氮化碳 过氧化氢 光化学 试剂 化学 纳米技术 化学工程 催化作用 无机化学 电极 电化学 有机化学 物理化学 工程类
作者
Jin Ma,Xiaoxiao Peng,Zhixin Zhou,Hong Yang,Kaiqing Wu,Zhengzou Fang,Dan Han,Yanfeng Fang,Songqin Liu,Yanfei Shen,Yuanjian Zhang
标识
DOI:10.26434/chemrxiv-2022-7hxsc
摘要

Artificial photosynthesis offers a promising strategy to efficiently produce hydrogen peroxide (H2O2)-not only an essential industrial chemical but also a promising intermediate product in tumor therapy. However, the rapidly consumed dissolving O2, the competition between oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), and poor activity of water oxidation reaction (WOR) in the photocatalytic processes greatly restrict the efficiency of photocatalytic H2O2 production. In this study, we report a well-defined metal-free C5N2 photocatalyst for efficiently H2O2 production without sacrificial reagents and stabilizers both in normoxic and hypoxic systems. Experimental and computational investigations indicated that the strengthened delocalization of electrons by imine facilitated the formation of electronic structure matching H2O2 production both at the conduction band and valence band in thermodynamics, thus an efficient electron-hole separation and the realistic redox selectivity were successfully enabled. Under simulated solar irradiation, C5N2 achieved an apparent quantum efficiency of 15.4% at 420 nm together with a solar-to-chemical conversion efficiency of 0.55% for H2O2 synthesis, among the best H2O2 production photocatalysts in normoxic systems. More interestingly, due to the dual channels of H2O2 generation, C5N2 could efficiently remove hypoxia restriction and further induce more severe cell damage in photodynamic therapy (PDT). Our findings provided essential insights into the design and synthesis of the dual-channel H2O2 production photocatalysts at the molecular level and would pave more broad applications of photocatalytic H2O2 production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
YXIAN完成签到,获得积分10
1秒前
天秀之合完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
zzz完成签到,获得积分10
3秒前
3秒前
4秒前
打打应助lucky采纳,获得10
4秒前
深情飞丹完成签到 ,获得积分10
5秒前
pluto应助舒适路人采纳,获得10
5秒前
R18686226306发布了新的文献求助10
6秒前
7秒前
栗子哇呀完成签到 ,获得积分20
8秒前
lizhiqian2024发布了新的文献求助10
8秒前
9秒前
小张发布了新的文献求助10
9秒前
9秒前
杰king发布了新的文献求助10
10秒前
betty发布了新的文献求助10
11秒前
12秒前
12秒前
QIAN发布了新的文献求助10
14秒前
在水一方应助Wang采纳,获得10
15秒前
15秒前
16秒前
May发布了新的文献求助10
16秒前
Alina1874发布了新的文献求助20
16秒前
张若旸发布了新的文献求助20
16秒前
知行合一完成签到 ,获得积分10
17秒前
pluto应助舒适路人采纳,获得10
17秒前
18秒前
zoey发布了新的文献求助10
19秒前
虚拟的酸奶完成签到,获得积分10
19秒前
大气绮露发布了新的文献求助10
20秒前
20秒前
gemini0615发布了新的文献求助10
21秒前
杰king发布了新的文献求助10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784451
求助须知:如何正确求助?哪些是违规求助? 3329582
关于积分的说明 10242685
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671561
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391