Recent advances in LC‐MS‐based metabolomics for clinical biomarker discovery

代谢组学 生物标志物发现 化学 代谢物 生物标志物 计算生物学 样品制备 衍生化 色谱法 蛋白质组学 质谱法 生物化学 生物 基因
作者
Chao‐Jung Chen,Der‐Yen Lee,Jiaxin Yu,Yu‐Ning Lin,T. M. Lin
出处
期刊:Mass Spectrometry Reviews [Wiley]
卷期号:42 (6): 2349-2378 被引量:79
标识
DOI:10.1002/mas.21785
摘要

The employment of liquid chromatography-mass spectrometry (LC-MS) untargeted and targeted metabolomics has led to the discovery of novel biomarkers and improved the understanding of various disease mechanisms. Numerous strategies have been reported to expand the metabolite coverage in LC-MS-untargeted and targeted metabolomics. To improve the sensitivity of low-abundance or poor-ionized metabolites for reducing the amount of clinical sample, chemical derivatization methods are used to target different functional groups. Proper sample preparation is beneficial for reducing the matrix effect, maintaining the stability of the LC-MS system, and increasing the metabolite coverage. Machine learning has recently been integrated into the workflow of LC-MS metabolomics to accelerate metabolite identification and data-processing automation, and increase the accuracy of disease classification and clinical outcome prediction. Due to the rapidly growing utility of LC-MS metabolomics in discovering disease markers, this review will address the recent advances in the field and offer perspectives on various strategies for expanding metabolite coverage, chemical derivatization, sample preparation, clinical disease markers, and machining learning for disease modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助mage采纳,获得10
刚刚
2秒前
善学以致用应助sensAn采纳,获得10
3秒前
4秒前
TT应助fffffff采纳,获得20
5秒前
2568269431发布了新的文献求助10
6秒前
7秒前
优美的听筠完成签到,获得积分20
10秒前
cun完成签到,获得积分10
13秒前
fffffff完成签到,获得积分10
15秒前
15秒前
wanci应助科研通管家采纳,获得30
17秒前
英姑应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
JamesPei应助gugu采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得30
18秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
22秒前
^O^完成签到,获得积分10
22秒前
23秒前
23秒前
哎呀发布了新的文献求助10
24秒前
25秒前
桐炫完成签到,获得积分10
26秒前
李君然发布了新的文献求助10
27秒前
友好雅山完成签到,获得积分10
27秒前
27秒前
Ywd发布了新的文献求助10
28秒前
一一发布了新的文献求助10
29秒前
机灵的勒发布了新的文献求助10
30秒前
33秒前
ll完成签到 ,获得积分10
34秒前
35秒前
忧郁醉薇发布了新的文献求助10
38秒前
机灵的勒完成签到,获得积分10
42秒前
高分求助中
Calogero—Moser—Sutherland Systems 666
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800724
求助须知:如何正确求助?哪些是违规求助? 3346204
关于积分的说明 10328503
捐赠科研通 3062675
什么是DOI,文献DOI怎么找? 1681117
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646