Eco-efficiency of Chinese transportation industry: A DEA approach with non-discretionary input

数据包络分析 工业化 背景(考古学) 业务 实证研究 政府(语言学) 产业组织 可持续发展 中国 城市化 生态效率 前提 环境经济学 经济 经济增长 法学 数学优化 古生物学 哲学 认识论 生物 语言学 市场经济 数学 政治学
作者
Yao-yao Song,Jingjing Li,Jinli Wang,Guo-liang Yang,Zhenling Chen
出处
期刊:Socio-economic Planning Sciences [Elsevier BV]
卷期号:84: 101383-101383 被引量:32
标识
DOI:10.1016/j.seps.2022.101383
摘要

In the context of the rapid development of Chinese economy and the advancement of urbanization and industrialization, the transportation industry caused serious environmental pollution and resource waste problems. The eco-efficiency of Chinese transportation industry has become a hot spot of society. Recently, China announced several initiatives to stabilize and expand employment, so that the efficient and sustainable development of industries cannot be based on the premise of reducing the labor force. However, traditional efficiency measures usually assume that inputs can be reduced at will, which is insufficient to correctly represent the observed practice. In this paper, we investigate the eco-efficiency of the transportation industry in 30 Chinese provinces incorporating the non-discretionary input labor and undesirable output CO2 emission. Data envelopment analysis and directional distance function approaches are employed in constructing the measurement model. Our empirical results reveal explicit spatial features of the eco-efficiency in various provinces and show significant correlation between eco-efficiency and industrial structure, technological, and management factors. To examine the validity of our proposed models, comparative studies were further conducted and illustrated that the introduction of non-discretionary inputs and the selection of direction vectors have a crucial impact on the results of eco-efficiency. Based on the empirical results and our summarized policy implications, we found several deficiencies in the real policies and put forward corresponding policy suggestions for the industry and government.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ouLniM发布了新的文献求助10
1秒前
无花果应助甜甜芾采纳,获得30
1秒前
六个核桃手拉手完成签到,获得积分10
2秒前
shatang发布了新的文献求助10
2秒前
nav发布了新的文献求助10
2秒前
3秒前
3秒前
科研通AI5应助Sean采纳,获得10
4秒前
科研通AI5应助研友_nVWP2Z采纳,获得10
4秒前
LXhong给LXhong的求助进行了留言
5秒前
等光来完成签到,获得积分10
5秒前
916发布了新的文献求助10
6秒前
科目三应助真实的便当采纳,获得10
9秒前
怕黑明雪完成签到,获得积分10
9秒前
9秒前
11秒前
shatang完成签到,获得积分10
13秒前
13秒前
爆米花应助LiYJS采纳,获得10
14秒前
laodie完成签到,获得积分10
15秒前
lanping666完成签到,获得积分10
15秒前
萨尔莫斯发布了新的文献求助10
16秒前
研友_nVWP2Z发布了新的文献求助10
16秒前
17秒前
Saunak完成签到,获得积分10
19秒前
Cadre发布了新的文献求助10
20秒前
22秒前
Sean发布了新的文献求助10
23秒前
23秒前
24秒前
田様应助123321采纳,获得10
24秒前
25秒前
pe完成签到,获得积分10
26秒前
平淡小丸子完成签到 ,获得积分10
28秒前
CodeCraft应助猪猪采纳,获得10
28秒前
pe发布了新的文献求助10
29秒前
29秒前
29秒前
ohooo完成签到,获得积分20
29秒前
大鲸在游泳完成签到,获得积分10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627