Snake Optimizer: A novel meta-heuristic optimization algorithm

计算机科学 元启发式 CMA-ES公司 数学优化 差异进化 水准点(测量) 连续优化 Bat算法 最优化问题 启发式 算法 进化策略 进化算法 多群优化 数学 粒子群优化 地理 大地测量学
作者
Fatma A. Hashim,Abdelazim G. Hussien
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:242: 108320-108320 被引量:624
标识
DOI:10.1016/j.knosys.2022.108320
摘要

In recent years, several metaheuristic algorithms have been introduced in engineering and scientific fields to address real-life optimization problems. In this study, a novel nature-inspired metaheuristics algorithm named as Snake Optimizer (SO) is proposed to tackle a various set of optimization tasks which imitates the special mating behavior of snakes. Each snake (male/female) fights to have the best partner if the existed quantity of food is enough and the temperature is low. This study mathematically mimics and models such foraging and reproduction behaviors and patterns to present a simple and efficient optimization algorithm. To verify the validity and superiority of the proposed method, SO is tested on 29 unconstrained Congress on Evolutionary Computation (CEC) 2017 benchmark functions and four constrained real-world engineering problems. SO is compared with other 9 well-known and newly developed algorithms such as Linear population size reduction-Success-History Adaptation for Differential Evolution (L-SHADE), Ensemble Sinusoidal incorporated with L-SHADE (LSHADE-EpSin), Covariance matrix adaptation evolution strategy (CMAES), Coyote Optimization Algorithm (COA), Moth-flame Optimization, Harris Hawks Optimizer, Thermal Exchange optimization, Grasshopper Optimization Algorithm, and Whale Optimization Algorithm. Experimental results and statistical comparisons prove the effectiveness and efficiency of SO on different landscapes with respect to exploration–exploitation balance and convergence curve speed. The source code is currently available for public from: https://se.mathworks.com/matlabcentral/fileexchange/106465-snake-optimizer
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助zaqqq采纳,获得10
2秒前
4秒前
uniphoton发布了新的文献求助10
5秒前
SQDHZJ完成签到,获得积分10
7秒前
Yon完成签到 ,获得积分10
9秒前
9秒前
隐形曼青应助iwhsgfes采纳,获得10
9秒前
11秒前
科研通AI2S应助徐佳乐采纳,获得10
13秒前
13秒前
WYN发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
俭朴夜香完成签到,获得积分10
17秒前
18秒前
xms2022发布了新的文献求助10
20秒前
周晏平发布了新的文献求助10
20秒前
Rein发布了新的文献求助10
21秒前
酷波er应助wenfeisun采纳,获得10
21秒前
22秒前
pazuzu发布了新的文献求助10
23秒前
慕青应助狂野的大公猪采纳,获得10
24秒前
24秒前
26秒前
pazuzu完成签到,获得积分20
28秒前
meng发布了新的文献求助10
29秒前
善学以致用应助周晏平采纳,获得30
29秒前
29秒前
徐佳乐发布了新的文献求助10
29秒前
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
HEIKU应助科研通管家采纳,获得10
31秒前
赘婿应助科研通管家采纳,获得10
31秒前
31秒前
HEIKU应助科研通管家采纳,获得10
31秒前
HEIKU应助科研通管家采纳,获得10
31秒前
HEIKU应助科研通管家采纳,获得10
31秒前
大个应助科研通管家采纳,获得100
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648