Insight into the degradation of tetracycline hydrochloride by non-radical-dominated peroxymonosulfate activation with hollow shell-core Co@NC: Role of cobalt species

化学 催化作用 电子转移 盐酸四环素 降级(电信) 可重用性 光化学 无机化学 四环素 有机化学 计算机科学 程序设计语言 抗生素 软件 电信 生物化学
作者
Yawen Chen,Kangping Cui,Minshu Cui,Tong Liu,Xing Chen,Yihan Chen,Xianbao Nie,Zhengjiang Xu,Chen‐Xuan Li
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:289: 120662-120662 被引量:81
标识
DOI:10.1016/j.seppur.2022.120662
摘要

Cobalt species often play a crucial role in the sulfate radical (SO4−) generation during peroxymonosulfate (PMS) activation, but their roles in the formation of non-radical-dominated PMS activation are largely unclear. Here, shell-core hollow Co@NC with exposed two different cobalt species (i.e., Co nanoparticles and Co-Nx site) was prepared and used to activate PMS for tetracycline hydrochloride (TCH) degradation. The experimental results and theoretical calculations showed cobalt species play a crucial role in the 1O2-dominated TCH degradation in which Co-Nx directly served as active sites to adsorb PMS (*PMS) to facilitate PMS decomposition to form SO5−, and thereafter evolved into 1O2 by the rapid self-reaction of SO5−, while Co nanoparticles indirectly promote 1O2 generation via electron transfer due to their excellent conductivity. With exposed cobalt species and unique structure, Co@NC showed a remarkable catalytic activity for TCH degradation, outperforming the synthesized NC, Co-NC, and commercial Co3O4, Fe3O4 and MnO2. Meanwhile, the good stability and reusability, high environmental robustness and universal adaptability of Co@NC were demonstrated. The TCH degradation pathways including aniline ring oxidation, the cleavage of functional groups and ring-opening reactions were also proposed. The improved understanding on the roles of cobalt species in the non-radical-dominated PMS activation may inspire the development of efficient, selective, and robust cobalt-based catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linpei完成签到,获得积分20
刚刚
1秒前
小香香完成签到,获得积分10
1秒前
森距离发布了新的文献求助10
2秒前
洁净亦巧完成签到,获得积分10
3秒前
4秒前
5秒前
lizhiqian2024发布了新的文献求助30
6秒前
PhD完成签到,获得积分10
7秒前
哈哈哈666完成签到,获得积分10
7秒前
7秒前
木杉完成签到,获得积分10
7秒前
科研通AI5应助森距离采纳,获得10
8秒前
阿湫发布了新的文献求助10
10秒前
不和可乐发布了新的文献求助10
10秒前
10秒前
星弟完成签到 ,获得积分10
11秒前
思源应助云宝采纳,获得10
12秒前
12秒前
12秒前
berry完成签到,获得积分10
12秒前
12秒前
自由月亮完成签到 ,获得积分10
13秒前
13秒前
13秒前
15秒前
jane完成签到,获得积分10
15秒前
15秒前
水门发布了新的文献求助10
16秒前
AURORA发布了新的文献求助10
16秒前
16秒前
zhangyulong发布了新的文献求助10
17秒前
17秒前
19秒前
鱼鱼鱼发布了新的文献求助10
19秒前
20秒前
华仔应助水门采纳,获得10
20秒前
21秒前
22秒前
hhh完成签到,获得积分10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802457
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336264
捐赠科研通 3064007
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997