Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研凡发布了新的文献求助10
2秒前
zxl完成签到,获得积分20
3秒前
研友_VZG7GZ应助搞怪绿柳采纳,获得10
4秒前
5秒前
5秒前
李爱国应助IanYoung71采纳,获得10
6秒前
6秒前
7秒前
李健的粉丝团团长应助zxl采纳,获得10
8秒前
xzy发布了新的文献求助10
10秒前
huangyao完成签到 ,获得积分10
11秒前
曹振宇发布了新的文献求助10
11秒前
科研凡完成签到,获得积分10
11秒前
12秒前
12秒前
14秒前
领导范儿应助山月采纳,获得10
15秒前
15秒前
Ciro发布了新的文献求助10
17秒前
jenningseastera应助von采纳,获得10
17秒前
Akim应助麻辣烫采纳,获得10
18秒前
xzy完成签到,获得积分10
18秒前
搞怪绿柳发布了新的文献求助10
18秒前
lunar完成签到 ,获得积分10
20秒前
段笙完成签到,获得积分20
20秒前
22秒前
xly发布了新的文献求助10
22秒前
段笙发布了新的文献求助10
23秒前
英俊的铭应助nuoran采纳,获得10
24秒前
丘比特应助yuxin1采纳,获得10
24秒前
自由的青槐完成签到,获得积分10
26秒前
27秒前
WeiPaiHWuFXZ完成签到 ,获得积分10
27秒前
SYLH应助wysky37采纳,获得10
27秒前
Bystander完成签到 ,获得积分10
28秒前
28秒前
赘婿应助跳跃的曼荷采纳,获得10
29秒前
哈好好哈哈好完成签到,获得积分10
32秒前
聪慧的凝海完成签到 ,获得积分0
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846856
求助须知:如何正确求助?哪些是违规求助? 3389344
关于积分的说明 10556933
捐赠科研通 3109741
什么是DOI,文献DOI怎么找? 1713870
邀请新用户注册赠送积分活动 825023
科研通“疑难数据库(出版商)”最低求助积分说明 775164